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Abstract
In this article we describe how we approached the transition from the BOA to the POA while developing our framework for CORBA persistence, showing both the disadvantages of the BOA (Basic Object Adapter)—and how we overcame them—and the advantages of the new POA (Portable Object Adapter) specification. We also present the changes imposed by the usage of the POA, and compare the performance of different POA implementations offered by POA enabled ORBs.
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1 Introduction
CORBA [1] has emerged as an industry standard for developing object-based distributed applications. However, it has been traditionally hard to provide persistent storage support to CORBA implementation objects. The specification of both the Basic Object Adapter (BOA)—in which the server object life cycle was not clearly defined—and the Persistent Object Service (POS) [2]—which was never completely implemented and afterwards proved to be buggy[3]—leaded to main middleware companies to offer propietary APIs, such as IONA’s Orbix Class Loaders[4] and Inprise’s Visibroker Activators[5].
The OMG realized of this problem and released the Portable Object Adapter (POA) [1,6,7] that established distinct life cycles for implementation objects (called servants) and the references to those objects, exported to clients. To cope with the deficiencies of the POS, the OMG issued a Request For Proposals (RFP) [8] for the Persistent State Service 2.0, and several responses have been received [9].
Although we find very convenient the model exposed by the the PSS 2.0 specification together with the POA, there are some drawbacks on using this service:
· The OMG has not adopted it yet, so there are no solid implementations to take in account
· The PSS only considers the POA, not the BOA. There is a large code base and running systems that have not been updated to support the new POA specification
Due to the lack of standards, persistence support for CORBA objects is often designed ad hoc, leading to non-reusable, non-portable and inefficient implementations (for example, lacking of cache support). 
These problems motivated the construction of a framework for CORBA persistence [10] with the characteristics shown in the next section.  While developing our framework, we made the transition from BOA to POA. In this article we focus on (1) how we overcame the deficiencies of the BOA on generating persistent references (2) what changes we had to do in the transition to the POA, matching the POA specification with our design decisions, and (3) some performance results that show the validity of our approach on bringing persistence to CORBA objects.
This paper is structured as follows: section 2 outlines the developed framework, introducing its main characteristics and the requirements imposed when using the BOA and the POA; Section 3 describes our first implementation using the BOA, the new characteristics introduced by the POA, the  changes we did in the framework implementation to support it, and some performance results that show the validity of our approach; section 4 outlines the conclusions and future work.
2 A framework for CORBA persistence
The framework presented in [10] has the following main characteristics. These characteristics define both the needs imposed by its implementation and the usage of the BOA and the POA to supply them:
· It supports both BOA and POA, dealing with the problems of persistent references caused by the former.
· It is 100% CORBA, as it uses only standard mechanisms.
· It supports direct integration of relational database systems (RDBMS).
· It generates automatically the persistence support for CORBA implementation objects and offers a transparent access to clients through a convenient interface based on “factories” and “iterators” [11].
· It offers efficient access by using a cache of “active” objects.
The framework generates the persistence support for CORBA implementation objects described using DDL (Data Definition Language). We took DDL from the POS [2]. It allows a simple syntactic and semantic analysis (through free tools and libraries) and easy integration with any other IDL definitions of the application.
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Figure 1. Data flow of the automatic persistent object implemenation generator.
The framework consist of a “Generator” and a series of classes that offer persistence support. Figure 1 depicts the data flow diagram of the generation of this persistence support. Processing the DDL file, the “Generator” creates the following files:
· A SQL file with the “create table” statements for providing persistent storage.
· An IDL file containing those definitions in the DDL file and the interfaces used by clients.
· A set of java files that implement the persistent support, as well as the interfaces exported to clients.
As an example, consider the following definitions for a simple “library” management program. We consider books, book authors, and editorials. We chose to mark as “readonly” those attributes which denote the key value (i.e. name and last name for Author interface). We write the DDL definitions and put them on the file library.ddl:
// DDL
module library {
    interface author {
        readonly attribute string name;
        readonly attribute string lastname;
        string short age;
    };
    interface editorial {
        readonly attribute string name;
        attribute string address;
    };
    interface book {
        readonly attribute string title;
        attribute author bookAuthor;
        attribute editorial editor;
        attribute long year;
    };
};
2.1 The client view
The client view defines how clients use persistent objects. Although clients use their references regardless of whether they denote persistent or non-persistent objects, clients' needs will guide the development of server-side persistent support for implementations objects.
For each interface defined in the DDL file, “factory” and “iterator” [11] classes are generated. Those classes represent a common design practice in the standard CORBA Services [2]. Using the “Generator” of Figure 1, we obtain an IDL file called library_gen.idl (we show only the generated interfaces for the book interface):
// IDL
#include "library.ddl"
module library {
    typedef sequence<library::book> bookList;
    interface bookIterator {
        library::book next();
        bookList next_n(in long howMany);
    };
    interface bookFactory {
        library::book getObject(in string name);
        void remove(in string name);
        boolean exists(in string name);
        bookList list(in string condition, 
                      in long howMany, 
                      out bookIterator it);
    };
};
Each factory object manage a set of objects of the same DDL interface. Clients can use getObject to obtain a reference to an object given its key (or create it if it doesn't exists). They can also remove objects, ask whether an object exists, and list the set of objects managed by this factory. The list operation returns a bookIterator, with which clients can traverse the set of objects. The iterator interface offers the common operations that allow to process the next object (next) and a group of following objects (next_n). This interface resembles the well-known CosNaming::BindingIterator interface included in the CORBA Naming Service [2].
As an example of client usage, the next table shows how a Java and a C++ client use the services offered by the framework:
	Java
	C++

	import library.*;
// ...
bookFactory bf=//Obtain ref.
// Obtain “Design Patterns”
book myBook;
myBook = bf.getObject(“D. P.”);
// Do something with myBook
System.out.println(myBook.year());
// Also modify it
authorFactory af=//Obtain ref.
myBook.author(
    af.getObject(“Gamma, E.”));
	using namespace library;
// ...
bookFactory_var bf=//Obtain ref.
// ditto.
book_var myBook;
myBook=bf->getObject(“D. P.”);
// ditto.
cout << myBook->year()<<endl;
// ditto.
authorFactory_var af=//Obtain ref.
myBook->author(
    af->getObject(“Gamma, E.”));


2.2 The Implementation

For the implementation of the framework we used the Java language [12]. The framework includes the Generator and a set of utility classes defined in the dbcollection Java package.
Our first implementation of the framework was guided by the BOA. In this section we will show the internal framework organization: the generated classes and the relationships between them. In the next section we will study the implementation details regarding the usage of both the BOA and the POA.
For each interface defined in DDL (we take book for this example), the “Generator” creates a set of classes for the implementation part:
· bookImpl: Implements the CORBA interface book, including the accessor/mutator operations for each attribute.
· bookFactoryImpl: Implements the factory interface offered to clients.
· bookIteratorImpl: Implementation of the iterator interface offered to clients.
· bookOA: The Object Adaptor for this interface. This is different from the CORBA Object Adaptor. Objects of this class know how to passivate and activate objects of the corresponding CORBA interface to/from a database. They implement the dbObjectAdaptor interface in dbcollection.
Factory classes are also responsible for implementing the caching support for the objects they manage. It will decide when to activate or passivate an object depending on the caching policy. Instead of every factory implementing the caching support, the framework offers a class called AbstractFactory (again, belonging to the dbcollection package) that can be used by factories to delegate the cache management.  AbstractFactory treats all its objects as being of type java.lang.Object, and implements the cache as a hash table indexed by the object key. Thus, it needs the behavior offered by the “adapter” classes.
The interface of AbstractFactory resembles that of the rest of factories:
//Java
package dbcollection;
class AbstractFactory {
    public java.lang.Object getObject(Vector key) {...}
    public void store(Vector key) {...}
    public void remove(Vector key) {...}
    public boolean exists(Vector key) {...}
}
Note that getObject returns a java.lang.Object and that the key is modeled using a Vector.
3 From BOA to POA
As we said, our first implementation of the CORBA persistence framework used the BOA. When we started the implementation of our framework (fall of 1998), there were only a few ORBs that offered the POA, most of them in beta state. Today we can find a relatively large number of ORBs that offer the POA. Although the POA is a more complete specification than BOA and the latter has been deprecated by the OMG,  there exists a large code base which uses the BOA. In this section we describe the implementation we developed to support BOA-based ORBs and the changes we had to carry out to adapt it to the new and enhanced support offered by POA-enabled ORBs.
3.1 Simulating Persistent References with BOA
When a client of our framework obtains a reference to a persistent object (via the getObject of a factory object), it expects this reference to be valid, at least, for client's lifetime.
What is the problem with the BOA? Before the POA, the life cycle of an object reference was tied to the implementation object referenced at the server side. For our framework, this means that every exported reference must have, at the server side, an object implementation running in memory. For a relatively large number of objects, this turns out to be inviable in terms of memory and resource usage.
To solve this problem, we have three alternatives:
1. Clients can explicitly indicate the moment at which their interest on some object ceases. This approach has at least two drawbacks: i) it forces the client to treat differently persistent and non-persistent objects (which breaks one of our framework principles: persistence independence), and ii) the number of “active” implementation objects can still be too large if we have a set of concurrent running clients or if a number clients exist abnormally.
2. We can use ORB-specific extensions (such as the BOA implementation provided by MICO [16]) that allow on-demand object activation. Unfortunately, this would make our framework non-portable.
3. Manage object activation and deactivation (passivation) only on the server, guided by the cache policy.
In our framework, we chose the latter one. Note that this also breaks the principle of persistence independence, because when the caching system passivates an object, the client reference to that object becomes meaningless. The BOA offers the means to connect and disconnect objects to the ORB, being a simple locator of implementation objects. In fact, the complete BOA was replaced by only two operations (connect and disconnect) in the Java language mapping [14]. Moreover, re-connection (after deactivation) to the ORB does not guarantee the same reference for the same “conceptual” implementation object. Thus, if a client invokes a method on a deactivated reference, it will receive a CORBA::OBJECT_NOT_EXIST exception. A client can then re-invoke the getObject method for this object. This approach—despite of not being perfect—allows us to i) manage server resources efficiently and ii) automatically generate wrapper classes (via the “Generator”) that implement this behavior for clients.
In the BOA case, these wrapper classes are called “safe” classes, and follow the Proxy pattern [11]. For our book interface, a Proxybook class is generated. This class offers the same methods that book does, and acts as a “smart proxy” for the remote object. The safe class needs:
1. A reference to the remote persistent object (ref).
2. The object key (key), which allows re-invocation of the getObject method on the factory when needed.
3. A reference to the factory that manage this kind of objects (factory).
Thus, for each method, the corresponding proxy method will look like this:
class Proxybook {
    public type AttributeX() {
        while (true) {
            try {
                return ref.AttributeX();
            } catch (CORBA.OBJECT_NOT_EXIST ex) {
                ref = factory.getObject( key );
            }
        }
    }
}
3.2 Introducing the POA
The POA solves many of the problems present in the BOA and offers a series of policies which can be configured to suit the developer needs regarding implementation objects. POA decouples reference life cycle from implementation objects (called servants) life cycle. Now, a server can export persistent references to clients that always denote the same object. Servants don't have to be in execution when a client request arrives. POA offers methods to activate implementation objects on demand. If we use persistent references, the POA will know what object to activate.

A POA acts as an intermediary between the server ORB and the servants. An application can create as many POAs as it needs, each one identified by a name and organized in a tree structure. Each POA manages a set of references (each one identified within its POA by its ObjectId) and a set of implementation objects (servants). 

3.2.1 Selected POA Policies and Organisation
The POA specification includes seven policies that can be used to configure the needs of servants. We are interested in those that allows us to:

· Generate persistent references.

· Identify each object with an object key resembling its data base key.

· Take the control when a client issue a method call in an object that is not “active”, giving us the chance to re-activate the object and make it accessible  through the same reference (as we are using persistent references).

We used the set of default policies that POA provides (UNIQUE_ID, RETAIN, ORB_CTRL_MODEL, NO_IMPLICIT_ACIVATION), except that for generating persistent references, we used the PERSISTENT value of the Lifespan policy. For letting us to specify the identifier assigned to an object, we used the USER_ID value of the IdAssignment policy. For the last point above, we used the USE_SERVANT_MANAGER value of the  RequestProcessing policy.

It may seem strange that we didn't specify the NON_RETAIN value in the ServantRetention policy, using instead the default value of RETAIN and compelling the POA to maintain its own Active Object Map. In fact, the default value is not recommended when the POA manage a potentially huge set of objects (as it is our case). However, we use the default value of RETAIN because (1) the servant location is faster, as the POA first checks its internal Active Object Map, and then the ServantManager only if it is not present there; and (2) the number of active objects at a given time (and thus listed in the AOM) is limited  by the cache size, given that object activation and deactivation is managed by the caching system using the operations defined in the POA for explicit activation and deactivation: activate_object_with_id and deactivate_object. 

3.2.2 Changes to the Framework Implementation

The first immediate change to the framework implementation is the dropping of the unnecessary “safe” classes. Once a client has obtained a reference, it becomes valid until any client decides to remove it from the set of valid objects. Moreover, the “Generator” has to create a servant manager (more precisely a servant activator) for each persistent interface.
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Figure 2. Schematic class diagram of the framework implementation using POA.

Thus, for the book interface shown, the class bookServantManager will be generated. This class inherits from PortableServer::ServantActivatorPOA (see Figure 2), and offers two methods: incarnate that is invoked when a new object needs to be created or activated (given its key), and etherealize, invoked when an object is going to be deactivated. We actually do not use this method because before deactivating a given object, the object is written down onto the data base. Here is the code:

// Java

public class bookServantManager 

        extends org.omg.PortableServer.ServantActivatorPOA {

    private AbstractFactory af;

    public bookServantManager(AbstractFactory af) { this.af = af; }

    public org.omg.PortableServer.Servant incarnate(byte[] oid,

            org.omg.PortableServer.POA adapter) 

            throws org.omg.PortableServer.ForwardRequest {

        try {

            ObjectInputStream ent = 

                new ObjectInputStream(new ByteArrayInputStream(oid));

            Vector key = (Vector)ent.readObject();

            return 

              (org.omg.PortableServer.Servant)af.incarnateObject(oid));

        } catch (Exception ex) { ... }

        throw new org.omg.CORBA.OBJECT_NOT_EXIST();

    }

    public void etherealize( ... ) { 

// Empty 

    }

}

As we can see, the servant manager delegates the cache management (as before) in the AbstractFactory class. Note, however, that it uses the method incarnateObject. There exists a slight difference between getObject and incarnateObject. While the former is called by clients to explicitly retrieve the reference to a new object, the latter is issued implicitly when an invocation on a non-activated object occurs.  When a client invokes getObject (see Figure 3), AbstractFactory must explicitly register (or “connect”) the newly created object with the POA using the activate_object_with_id method. When an implicit activation occurs, it shouldn't. 

Figure 4 shows this latter case. Note how each object invocation is managed by the POA to which the destination  implementation object belongs. When a POA detects that a client is referencing an implementation object that is not active, it invokes the incarnate on the POA's servant manager
. Again, servant managers delegate the servant cache  management in the AbstractFactory class, this one delegating direct dialog with the database to the corresponding OA class, which finally creates the required servant using the data stored in the data base for this particular object. Once the servant has been created, the POA reinvokes the method on the newly created servant that can finally answer to the originally requesting client. In either explicit or implicit activation, however, AbstractFactory must maintain an up-to-date cache: cache management is orthogonal to the activation cause.
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Figure 3. Sequence diagram of a client explicitly requesting an object.

3.3 Experimental Results

BOA to POA migration was also an opportunity to obtain some performance results. We tested both our BOA implementation of persistent references and our POA implementation against raw JDBC access. We also tested our POA-based implementation in several ORBs, allowing us to compare the overheads introduced by the POA on the different ORB implementations. Finally, we tested the framework’s Java implementation against a preliminary C++ implementation.

Java implementation uses JDBC [13]. PostgreSQL was the underlying database used. For our tests, we used ORBacus 4.0 for Java and C++, JavaORB 2.2.5 and JacORB 1.1. We used a remote Windows'95 client and a Red Hat Linux 6.2 server running the database and the CORBA servers.

To simulate a typical use of the framework, we designed three benchmarking tests, A, B and C. Each test was run using the raw JDBC and each ORB. Test A uses the factory to access sequentially to each object in a set, requesting them one by one, and invoking a method on each one. Test B uses the factory-provided iterator and again we traverse all the objects managed by the factory invoking a method on each one. Test C finally simulates a group of clients accessing concurrently to the persistent objects. For this latter test, we fixed the number of total invocations which distributed through a fixed number of concurrent threads. Each test has two variants: one in which only accessor methods are invoked, and one in which fifty percent of the invocations are mutator methods.

We chose the simulation time of the JDBC implementation as being 1, and the rest of the numbers are relative. Figure 5 shows the results for test A. Although the best numbers show that the framework is three times slower than the JDBC implementation, this case is unrealistic, and represents one of the worst cases for the cache support. 
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Figure 4. Sequence diagram of an implicit object activation.
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Figure 5. Results for sequential access (Test A).

The same can be applied to results in Figure 6. Note however, that although the difference with JDBC is higher, iterator access is, in mean, two times faster than sequential one-by-one request (test A).
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Figure 6. Results for sequential iterator access (Test B).

The right side of Figure 7 (test C) represents the most realistic situation. It shows the performance results for random read/write access. Note that even with the enhancements provided by the POA—and hence the overhead introduced—our framework implementation, due to the cache management, outperforms both raw JDBC access, and the BOA implementation (which is lighter in theory). 

The figures also show the importance of an efficient POA implementation applying optimizations to the ORB design [15].  For example, ORBacus' implementation always offers better results than JavaORB's (in some cases it is even twice as fast).
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Figure 7. Results for random access (Test C).

Finally, we tested the Java implementation of the framework against our preliminary POA-based C++ implementation.  The results show that the C++ implementation is, as we expected, in mean, 50% faster than the corresponding Java implementation. 

4 Conclusions and Future Work

This paper shows the enhanced characteristics of the POA specification against the incomplete previous BOA specification. In particular, in the context of a persistence framework for CORBA objects (in which we need  persistent references), the POA offers a flexible interface that decouples the reference life cycle from the servant one and allows us to have a more accurate control over active servant objects. This is essential for us to implement efficient cache policies needed by our framework.

We have also designed a set of tests for evaluating the efficiency of several ORBs implementing the POA. These tests have demonstrated that, even offering to clients a convenient interface to the persistent objects (based on CORBA), the performance is equivalent to that obtained using raw relational database access through JDBC. However, our results reveal that the performance of the framework is tied to the efficiency of the ORB implementation being used.

Our future work will concentrate on enhancing the framework implementation by exploring new cache policies based on other POA policies, such as the use of a servant locator instead of a servant activator. We plan also to complete our C++ implementation offering a better performance comparison between both implementations. Finally, we plan to provide transactional support to the framework, using the CORBA Object Transaction Service [2].
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