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Abstract

This paper proposes a new version of Particle Filter,

called Articulated Particle Filter —ArPF—, which has

been specifically designed for an efficient sampling of

hierarchical spaces, generated by articulated objects.

Our approach decomposes the articulated motion into

layers for efficiency purposes, making use of a careful

modeling of the diffusion noise along with its propa-

gation through the articulations. This produces an in-

crease of accuracy and prevent for divergences. The al-

gorithm is tested on hand tracking due to its complex

hierarchical articulated nature. With this purpose, a

new dataset generation tool for quantitative evaluation

is also presented in this paper.

1. Introduction

Tracking articulated motion from video sequences is

one of the most active areas in computer vision. It can

be defined as the ability to recover a sequence of artic-

ulated poses, in most cases a human, from a video or

sequence of images. This is critical in applications such

as human computer interaction, motion capture, medi-

cal analysis and biometrics, to name a few.

Probabilistic tracking, such as the particle filter (PF)

method, has been a promising approach for markeless

articulated tracking [15, 3]. In initial approaches, the

tracking complexity increased exponentially with the

number of moving targets or independent segments.

However, in recent years several methods have been

proposed to alleviate this challenge. In this line, motion

models [1, 11, 14] have been applied in order to pro-

vide a context which strong constrains. The disadvan-

tage is a loss of generality, reducing the application to

a pre-trained set of actions. More shopisticated models

of interaction were proposed in [7] in order to account

for complex interaction between parts.

Among the techniques that do not limit the gener-

ality, limb hierarchy [5] has been proposed to reduce

the complexity of high-dimensional search. Since the

search space is partitioned according to the limb hier-

archy, each estimate constrains the possible configura-

tions of subsequent segments in the articulated chain

[5, 9]. However, an inherent problem of this approach

is the need to estimate accurately the parameters of the

initial segment to avoid the propagation of the error

to the subsequent segments [6, 4]. In a similar fash-

ion, partitioned sampling (PS) [8] reduces the complex-

ity of searching in many dimensions by decomposing

the space into sub-spaces which are estimated indepen-

dently of one another. This is done without altering the

probability density function, but the algorithm can only

be applied when specific conditions hold, such as ob-

servation functions can be measured independently and

the partition is meaningful [3, 8]. To overcame previous

limitations, annealed particle filter (APF) [2] uses sim-

ulated annealing to guide hypotheses towards the global

optimum, reducing the risk of getting stuck in local op-

tima. APF can also be understood as a soft partitioning

[3] of the search space as opposed to PS.

Despite the excellent results of APF in articulated

motion [13], it is not appropriate for all kind of hi-

erarchical spaces. The sampling of the search space

when the segments in the articulated chain have differ-

ent grade of variability is inefficient and leads to bad

estimations. This is due to a bad estimation of the diffu-

sion noise among layers, only based on the variance of

the sampling set. In fact, we defend that such a variance

is caused by two different factors, the spreading of the

hypotheses and the reliability of the observation func-

tion. Therefore, in order to estimate a valid configura-

tion, the algorithm requires to remove one of them from

the estimation problem, by means of an unambiguous

observation function [13, 11] or a articulated chain with

equally variable segment [3]. Proof of this is the ne-

cessity of a multi view system [13, 11] and the inability



of APF to solve monocular sequences [13] for complex

articulated chains.

In this paper, we propose a new method to track ar-

ticulated models based on semi-hard partitioning of the

search space. This partitioning is done according to the

hierarchical properties of kinematic chains, and allows

us to cope with imperfect observation functions. Exper-

iments are performed on hand tracking using Kinect as

a sensor to show its superior performance against APF

in complex articulated scenarios.

2. Articulated Particle Filter

The Articulated Particle Filter (ArPF) is based on the

well-known Annealed Particle Filter (APF), but it has

been designed to cope with the limitations of APF for

tracking hierarchical articulated chains.

APF follows the classical procedure defined by PF,

but introduces the concept of multilayered search space

in order to improve the convergence of particles toward

good solutions. In this space the different layers rep-

resent smoothed versions of the original, guiding the

propagation process from the smoothest layer (M ) to

the original one, through a set of levels. In this way, the

method can obtain a “general view” of the search space,

and therefore can avoid falling in local maxima. The set

of layers is generated by modifying the behavior of the

observation function ω(Z,X), such that for the m-th

layer ωm(Z,X) = ω(Z,X)βm , given that

β0 > · · · > βM (1)

where X denotes the model’s configuration vector and

Z notates the history of observations.

This process gives rise to a multi-layer sampling-

propagation scheme as showed in Eq. (2) and (3).

π
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k,m ∝ wm(Z,X = s

(i)
t ),

N−1
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i=0

π
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s
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k,m−1 +Bm, i = 0, . . . , N − 1 (3)

where s(i) and π(i) are the state vector and the weight

of each particle i at instant k, N is the total number of

particles andm is the layer of the annealing process.

The term Bm models the diffusion noise of the par-

ticle set for the m-th layer, an is drawn from a normal

distributionN (0,Pm), wherePm is proportional to the

covariance of the particle set. Setting the dispersion lev-

els in this way produces a sort of automatic partition

of the search space (soft partitioning), which allows for

optimising subsets of parameters according to the vari-

ance measured in the particle set. Such an idea was pre-

sented in [3], claiming that the variance of any parame-

ter is directly related to the degree of optimal estimation

of such parameter. So, parameters with higher variance

are considered as very influent and are firstly adjusted.

In theory the idea can produce a better convergence of

the algorithm.

However, the previous statement does not always

hold, since the variance of a parameter is determined

by both the accuracy of the hypothesis distribution and

the discriminatory capacity of ω(Z,X). In other words,
in real conditions the observation function cannot pro-

duce correct measurements along the full range of a pa-

rameter, which implies that in some areas there is not

enough information to estimate those parameters with

no uncertainty. This phenomenon introduces a factor

inversely proportional to the discriminatory capacity of

ω(Z,X) into the variance of those parameters. As a

consequence high variances can mean that a given pa-

rameter is dominating the space (and more particles can

be used to reduce its variance), or else, that the parame-

ter is reaching its confusion lower bound (and no further

improvement can be obtained). As conclusion, in order

to efficiently move particles in the space, the diffusion

noise of a parameter should be guided by a ratio be-

tween the variance of the whole set of particles S and

the discriminatory capacity of the observation function.

Nevertheless, the discriminatory capacity of an ob-

servation function ω(Z,X) is hard to define as it

changes over time and depends on many uncontrolled

variables, e.g. Z and X. However a simplified version

of this function can be defined as the resolution of the

k-th parameter of X in the range [a, b], given a specific
case Z. Here, D is the dimension of X extended with

two extra dimension due to the interval parameters [a, b]
and δkω,Z(X, a, b) is the resolution ofω(Z,X

∗)when all
the parameters except the k-th are fixed (Eq. (4)).

δkω,Z(X, a, b) = |b− a|
(

1−
(

argmax
a≤i≤b

(ξ(k, i)) −

argmin
a≤j≤b

(ξ(k, j))
)

)

: RD+2 →R (4)

where ξ(k, x) = ω(Z,X∗(k) ← x)) represents the as-
signment of optimal values for all the parameters X∗

except for the free parameter k, which is adjusted by

assigning it values in the range a ≤ x ≤ b. µ∗
k is the

mean of δkω,Z(X, a, b). In simple words, the resolution

δkω,Z(X, a, b) is calculated from the factors of the maxi-

mum variation of the observation function ω(Z,X) and
the length of the evaluation range [a, b]. The smaller

the output value is, the better the resolution of a given

function is achieved.

Although in real cases the optimal configuration can-

not be achieved, it can be approximated by statistical

reasoning of synthetic cases where the ground truth is

known. Following this philosophy, an estimated δ̂kω



for each parameter k has been learned by averaging a

small set of δkω,Z. The learnt model is used for cases

in which groundtruth is not available. By defining the

ratio
δ̂k
ω

VAR(S)k as the convergence criterion of the diffu-

sion noise, a better estimation of the diffusion noise and,

therefore, a more efficient sampling of the search space

are achieved. In other words, the diffusion noise has

to be reduced until the ratio converges to a value close

to one, which indicates the resolution bound has been

reached.

This reasoning has been incorporated into our new

ArPF. This is done by changing Eq. (3) for the new Eq.

(5), where the diffusion noise for them-th layer is gen-

erated by fσ
m : RK → RK proportionally to the initial

noiseΣ = {σ1, · · · , σk}. The result is a semi-hard par-

titioning of the search space, where the set of functions

F σ promotes but not enforces the partitions for every

level based on an annealed scheme of the noise. F σ is

expressed as M linear operators (being each function

a K × K diagonal matrix), resulting into a annealed

scheme defined byM ×K different weights.

s
(i)
k,m = s

(i)
k,m−1 + fσ

m(Σ), i = 0, . . . , N − 1 (5)

As mentioned before, these weights are learned from

statistical reasoning from a set of synthetic experiments

where only biomechanical constrains are used. The

weights are constrained to fulfil two conditions. Firstly,

the weights are selected following the order imposed

by the hierarchy of the kinematic chain. Secondly,

σk = fσ
m(k) > · · · > fσ

0 (k) = δ̂kω is ensured the con-

sistence of the simulated annealing, Eq. (1).

3. Experimental Results

In order to prove the advantages of our methodology,

we apply ArPF in the context of hand tracking, as an

example or hierarchical and complex articulated track-

ing. Our search spaceX is defined as a space ofD = 26
dimensions (see Fig. 1) such as:

X = {x, y, z, θ, ψ, ϕ, Y 1, Y 2, Y 3, Y 4, Y 5} (6)

where x,y,z and θ,ψ,ϕ are the global translation

and rotation parameters respectively, and Y i =
{α, β1, β2, β3} are the angular vectors corresponding to
each finger fi.

The observation function is defined as a weighted com-

bination of two terms, the hand visual appearance and

its depth information (Eq. (7)), according to a given

weight ρ, which in our case is 0.4.

h(X,Z) = ρhv + (1 − ρ)hd (7)

(x, y, z)

θ

ψ

 φ

α

β1

β2

β3

Figure 1. Virtual hand model and descrip-

tion of the state vector parameters.

The visual term is generated by the bi-directional

silhouettes-based function hv(X,Z) as given in [13].

The depth-based term is calculated as an extension of

these silhouettes [13] for depth values:

hd = exp

{

−λ

∑HxW
thresT1(|D − Z|)

∑HxW
thresT2(D × Z)

}

(8)

where λ is a constant to normalise the output values,

and the operator “×” represents the per-element multi-

plication of two matrices. The function thres is defined

as thresTi(X) = 1, ifXj > Ti, ∀Xj ∈ X ; or Xj oth-

erwise.

3.1. Quantitative evaluation

As additional contribution of this paper, we release a

new dataset generator [12] of synthetic sequences and

groundtruth for a detailed analysis of the problems in-

herent to articulated tracking. This is motivated for the

lack of standard dataset and groundtruth in the partic-

ular field of hand tracking [10], as opposed to other

application of such as HumanEva [13]. The tool pro-

vides to the community with a set of predefines 3D

videos, the associated groundtruth and their correspon-

dent 2D observations—silhouettes and depth maps—

for comparison purposes. It also allows the researchers

to configure and create new sequences and make them

public by configuring individually the parameter values

and variability of each of the segments in the output. Fi-

nally, the code of our tracking approach is also released

and proposed as a baseline for comparison.

By using this dataset, the accuracy of ArPF is com-

puted and compared with APF. Table 1 shows the re-

sults of ArPF and APF for five representative sequences

that include translations (Seq.#1), rotations (Seq.#2)

and complex fingers motion (Seq.#3-#5). The error

metric applied here is the same described in [13] to

calculate the average error of the articulations for full

human body configurations. This metric allows for en-

coding all the angular parameters in a simple represen-



tation based on the 3D position of key points (the cen-

troid of each finger articulation). Results consist on the

average error of the key points according to the values

provided by the groundtruth. All the methods where

tested with 120 particles and 8 layers. APF was op-

timised for the parameter values, obtaining its optimal

point for k = 10.

Table 1. Evaluation of the error [mm] for

ArPF and different versions of APF.

Sequences
ArPF APF [2] APF [3]

mean std. mean std. mean std.

#1 9 5 60 11 7 2.2

#2 7 3 65 19 4 1.8

#3 7 3.8 48 20 13 4.2

#4 7 2 60 14 11 3

#5 8 3 50 24 19 4.6

It can be observed how ArPF outperforms the best ver-

sion of APF in 3 out of 5 cases. This is explained for

the nature of the first 2 sequences, where no proper ar-

ticulated motion is performed, but only global transla-

tion and rotation. In this context, APF is able to pro-

vide better results, but when complex hierarchical artic-

ulation movements appears (finger motion), ArPF im-

proves APF clearly. This can be seen in Fig. 3, where

both methods are tested for a periodic movement of

opening and closing fingers (Seq.#3). For this case APF

is not able of tracking such an action and just follows

the global motion of the hand (its mass center and ori-

entation). For this reason, APF generates an error that

increases as the fingers move far away from their initial

position. In contrast our approach is able to track the

general motion and the complex movements success-

fully.

Our approach obtains an accuracy similar to the state

of the art for hand tracking [10] by just applying our

articulated tracking algorithm using simple observation

functions and models.

ArPF

Error = 4mm Error = 6mm Error = 6mm

APF

Error = 4mm Error = 5mm Error = 17mm

Figure 2. Pose estimation for ArPF and

APF vs. the groundtruth (shadow) on se-

quence 3, frames: 1, 5, 20.

Figure 3. Evaluation of the error based on

metric [13] for ArPF and APF [3] in seq. #3.

3.2. Qualitative evaluation

Finally, the performance of our algorithm is demon-

strated on a real application, where Kinect is used as

a sensor providing depth information and silhouettes

are extracted by colour segmentation (a glove was used

to simplified the segmentation since it is outside of the

scope of this paper). Satisfactory results are shown in

Fig. 4, where slight fitting errors are due to the simple

modelling of the 3D hand.

Figure 4. Hand estimation for two real se-

quences capture by a Kinect.



4. Conclusions

In this paper a new version of particle filter for articu-

lated tracking is presented. The ArPF makes use of a

layered partitioning and a detailed noise modelling for

sampling efficiently the search space. The potentiality

of the method is demonstrated by using hand tracking

as a case of use.

The main contributions of the paper are the formu-

lation of the articulated particle filter, the extension of

the concept of bidirectional silhouettes for depth maps

and the introduction of a new dataset generator able

to provide videos and groundtruth for testing quanti-

tatively hand tracking algorithms [12]. Quantitative

and qualitative results confirm the adequacy of our pro-

posed methodology for articulated tracking. In spite of

a rough 3D model of the hand and standard observa-

tion metrics, the system is able to successfully track the

hand.
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