
Enhancing Metaheuristic-based Virtual Screening

Methods on Massively Parallel and

Heterogeneous Systems

Baldomero Imbernón1, José M. Cecilia 2 and Domingo Giménez 3

1−2 Polytechnic School
Catholic University of San Antonio of Murcia (UCAM)

Murcia, Spain

3 Department of Computing and Systems
University of Murcia

Murcia, Spain

1bimbernon@alu.ucam.edu, 2jmcecilia@ucam.edu, 3domingo@um.es

March 12, 2016

1 / 14



Table of Contents

1 Introduction
Motivation

2 Metaheuristics for Virtual Screening

3 Parallelization strategy
Exploiting heterogeneity

4 Experimental Setup
Hardware environment
Benchmarks and Datasets

5 Experimental Results

6 Conclusions

7 Work in progress
Preliminary results

2 / 14



Introduction

• Metaheuristic techniques afford optimal approaches for solving
optimization problems, combining performance, quality and
resource optimization.

• Many of these techniques are used in computing virtual screening
processes based on the calculation of a scoring function.

• These screening processes calculate the interaction between a
set of chemical compounds (ligands) and a protein (receptor).

Features
• Optimization problem.

• High computational cost.

Introduction 3 / 14



Introduction

• Metaheuristic techniques afford optimal approaches for solving
optimization problems, combining performance, quality and
resource optimization.

• Many of these techniques are used in computing virtual screening
processes based on the calculation of a scoring function.

• These screening processes calculate the interaction between a
set of chemical compounds (ligands) and a protein (receptor).

Features
• Optimization problem.

• High computational cost.

Introduction 3 / 14



Introduction

• Metaheuristic techniques afford optimal approaches for solving
optimization problems, combining performance, quality and
resource optimization.

• Many of these techniques are used in computing virtual screening
processes based on the calculation of a scoring function.

• These screening processes calculate the interaction between a
set of chemical compounds (ligands) and a protein (receptor).

Features
• Optimization problem.

• High computational cost.

Introduction 3 / 14



Introduction

• Metaheuristic techniques afford optimal approaches for solving
optimization problems, combining performance, quality and
resource optimization.

• Many of these techniques are used in computing virtual screening
processes based on the calculation of a scoring function.

• These screening processes calculate the interaction between a
set of chemical compounds (ligands) and a protein (receptor).

Features
• Optimization problem.

• High computational cost.

Introduction 3 / 14



Motivation

Problem parallel nature

• Several points in the receptor
(called spots), where ligands
may independently couple.

• A set of bio-inspired
metaheuristic techniques that
enable parallelization.

Computational resources
• Heterogeneus computing.

• Application of CUDA-based techniques to accelerate the most
expensive parts of the computation.

Introduction Motivation 4 / 14



Motivation

Problem parallel nature

• Several points in the receptor
(called spots), where ligands
may independently couple.

• A set of bio-inspired
metaheuristic techniques that
enable parallelization.

Computational resources
• Heterogeneus computing.

• Application of CUDA-based techniques to accelerate the most
expensive parts of the computation.

Introduction Motivation 4 / 14



Motivation

Problem parallel nature

• Several points in the receptor
(called spots), where ligands
may independently couple.

• A set of bio-inspired
metaheuristic techniques that
enable parallelization.

Computational resources
• Heterogeneus computing.

• Application of CUDA-based techniques to accelerate the most
expensive parts of the computation.

Introduction Motivation 4 / 14



Motivation

Problem parallel nature

• Several points in the receptor
(called spots), where ligands
may independently couple.

• A set of bio-inspired
metaheuristic techniques that
enable parallelization.

Computational resources
• Heterogeneus computing.

• Application of CUDA-based techniques to accelerate the most
expensive parts of the computation.

Introduction Motivation 4 / 14



Metaheuristics for Virtual Screening

• A metaheuristic generic template to apply several metaheuristics
through six simple functions.

Generic template for metaheuristics

Initialize(S)
while not End(S) do

Select(S,Ssel)
Combine(Ssel,Scom)
Improve(Scom)
Include(Scom,S)

end while

• Independent populations at each spot ⇒ apply metaheuristic
techniques to the spots in parallel.

• Possible solutions are generated by moving and rotating around
each spot.

Metaheuristics for Virtual Screening 5 / 14



Metaheuristics for Virtual Screening

• A metaheuristic generic template to apply several metaheuristics
through six simple functions.

Generic template for metaheuristics

Initialize(S)
while not End(S) do

Select(S,Ssel)
Combine(Ssel,Scom)
Improve(Scom)
Include(Scom,S)

end while

• Independent populations at each spot ⇒ apply metaheuristic
techniques to the spots in parallel.

• Possible solutions are generated by moving and rotating around
each spot.

Metaheuristics for Virtual Screening 5 / 14



Metaheuristics for Virtual Screening

• A metaheuristic generic template to apply several metaheuristics
through six simple functions.

Generic template for metaheuristics

Initialize(S)
while not End(S) do

Select(S,Ssel)
Combine(Ssel,Scom)
Improve(Scom)
Include(Scom,S)

end while

• Independent populations at each spot ⇒ apply metaheuristic
techniques to the spots in parallel.

• Possible solutions are generated by moving and rotating around
each spot.

Metaheuristics for Virtual Screening 5 / 14



Parallelization strategy

• An OpenMP scheme is used to divide the work among the GPUs
available on the node.

Scoring computation on multicore+multiGPU

omp set num threads(number GPUs)
#pragma omp parallel for
for i=1 to number GPUs do

Select device(Devices[i].id)
Host To GPU(S,Stmp)
Conformations=Devices[i].conformations
threads=Devices[i].Threadsblock
Calculate scoring<Conformations/threads,threads>(Stmp)
GPU To Host(S,Stmp)

end for

• Solutions are grouped into 32 GPU threads, similar to the
WARP size to optimize the computation.

Parallelization strategy 6 / 14



Parallelization strategy

• An OpenMP scheme is used to divide the work among the GPUs
available on the node.

Scoring computation on multicore+multiGPU

omp set num threads(number GPUs)
#pragma omp parallel for
for i=1 to number GPUs do

Select device(Devices[i].id)
Host To GPU(S,Stmp)
Conformations=Devices[i].conformations
threads=Devices[i].Threadsblock
Calculate scoring<Conformations/threads,threads>(Stmp)
GPU To Host(S,Stmp)

end for

• Solutions are grouped into 32 GPU threads, similar to the
WARP size to optimize the computation.

Parallelization strategy 6 / 14



Exploiting heterogeneity

• Assign a similar number of possible solutions to each GPU for
computation.

• GPUs of a node may belong to different families and have
different computation capabilities.

Solution
• Execute a set of calculations in a Warm Phase for experimental

estimation of the computational capability of the device.

• Divide the work according to the computational capabilities.

Percent =
Ex.timeactualGPU

Ex.timeslowestGPU

Parallelization strategy Exploiting heterogeneity 7 / 14



Exploiting heterogeneity

• Assign a similar number of possible solutions to each GPU for
computation.

• GPUs of a node may belong to different families and have
different computation capabilities.

Solution
• Execute a set of calculations in a Warm Phase for experimental

estimation of the computational capability of the device.

• Divide the work according to the computational capabilities.

Percent =
Ex.timeactualGPU

Ex.timeslowestGPU

Parallelization strategy Exploiting heterogeneity 7 / 14



Exploiting heterogeneity

• Assign a similar number of possible solutions to each GPU for
computation.

• GPUs of a node may belong to different families and have
different computation capabilities.

Solution
• Execute a set of calculations in a Warm Phase for experimental

estimation of the computational capability of the device.

• Divide the work according to the computational capabilities.

Percent =
Ex.timeactualGPU

Ex.timeslowestGPU

Parallelization strategy Exploiting heterogeneity 7 / 14



Exploiting heterogeneity

• Assign a similar number of possible solutions to each GPU for
computation.

• GPUs of a node may belong to different families and have
different computation capabilities.

Solution
• Execute a set of calculations in a Warm Phase for experimental

estimation of the computational capability of the device.

• Divide the work according to the computational capabilities.

Percent =
Ex.timeactualGPU

Ex.timeslowestGPU

Parallelization strategy Exploiting heterogeneity 7 / 14



Hardware environment

Jupiter. 12 cores, 32 Gb RAM, 4 GeForce GTX 590 and 2 Tesla
C2075.

Hertz. 4 cores, 8 Gb RAM, 1 Tesla K40c and 1 GeForce GTX 580.

Experimental Setup Hardware environment 8 / 14



Benchmarks and Datasets

Benchmarks
Four metaheuristics considered in the experiments:

• M1. Genetic Algorithm.

• M2. Scatter Search.

• M3. Scatter Search with less intensive local search.

• M4. Neighborhood Search.

metaheuristics M1, M2 and M3 work with a population of 64
individuals for each spot, and M4 with 1024 individuals.

Datasets
Number of atoms of the benchmark compounds from PDB site.

Compounds Atoms Compounds Atoms
2BSM Receptor 3264 2BXG Receptor 8609

2BSM Ligand 45 2BXG Ligand 32
Experimental Setup Benchmarks and Datasets 9 / 14



Experimental Results

Execution time (in seconds) obtained with the application to protein
PDB:2BXG in Jupiter of the metaheuristics described. Heterogeneous
System with 4 GeForce GTX 590 + 2 Tesla C2075.

Metaheuristic OpenMP
Heterogeneus

System
SPEED-UP

Heterogeneus Computation
vs

OpenMP
Homogeneus
Computation

Heterogeneus
Computation

percentage
reduction

M1 1402.63 16.96 16.77 1.12 82.70
M2 2272.71 26.57 25.43 4.29 85.53
M3 711.01 8.72 8.46 2.98 81.53
M4 70505.22 764.131 757.32 0.89 92.26

Execution time (in seconds) obtained with the application to protein
PDB:2BXG in Hertz of the metaheuristics described. Heterogeneous
System with 1 Tesla K40c + 1 GeForce GTX 580.

Metaheuristic OpenMP
Heterogeneus

System
SPEED-UP

Heterogeneus Computation
vs

OpenMP
Homogeneus
Computation

Heterogeneus
Computation

percentage
reduction

M1 2327.60 33.92 22.82 32.62 101.96
M2 3908.46 55.56 41.58 25.16 93.98
M3 1336.40 18.13 13.64 24.67 97.96
M4 150958.75 1735.73 1253.64 27.67 120.41

Experimental Results 10 / 14



Conclusions

• With the execution of the most expensive parts in GPU the
performance obtained is in all the cases superior to 80x.

• The efficient exploitation of heterogeneity allows higher
performance in the case study.

• The use of parallel metaheuristics in virtual screening methods
facilitates lower execution times and also gets closer to optimal
solutions in less time.

Conclusions 11 / 14



Conclusions

• With the execution of the most expensive parts in GPU the
performance obtained is in all the cases superior to 80x.

• The efficient exploitation of heterogeneity allows higher
performance in the case study.

• The use of parallel metaheuristics in virtual screening methods
facilitates lower execution times and also gets closer to optimal
solutions in less time.

Conclusions 11 / 14



Conclusions

• With the execution of the most expensive parts in GPU the
performance obtained is in all the cases superior to 80x.

• The efficient exploitation of heterogeneity allows higher
performance in the case study.

• The use of parallel metaheuristics in virtual screening methods
facilitates lower execution times and also gets closer to optimal
solutions in less time.

Conclusions 11 / 14



Work in progress

• The parallel nature of the virtual screening problem allows us to
parallalize at high level and to extend the calculation to a cluster.

• Use of MPI to assign a set of spots to each node in the cluster.

Work modes

• Static. A Warm Phase to evaluate the computational capacity of
each node, and the work is divided accordingly.

• Dynamic. Assign a set of spots to each node. When a node
finishes, it asks for the next group.

Work in progress 12 / 14



Work in progress

• The parallel nature of the virtual screening problem allows us to
parallalize at high level and to extend the calculation to a cluster.

• Use of MPI to assign a set of spots to each node in the cluster.

Work modes

• Static. A Warm Phase to evaluate the computational capacity of
each node, and the work is divided accordingly.

• Dynamic. Assign a set of spots to each node. When a node
finishes, it asks for the next group.

Work in progress 12 / 14



Work in progress

• The parallel nature of the virtual screening problem allows us to
parallalize at high level and to extend the calculation to a cluster.

• Use of MPI to assign a set of spots to each node in the cluster.

Work modes

• Static. A Warm Phase to evaluate the computational capacity of
each node, and the work is divided accordingly.

• Dynamic. Assign a set of spots to each node. When a node
finishes, it asks for the next group.

Work in progress 12 / 14



Work in progress

• The parallel nature of the virtual screening problem allows us to
parallalize at high level and to extend the calculation to a cluster.

• Use of MPI to assign a set of spots to each node in the cluster.

Work modes

• Static. A Warm Phase to evaluate the computational capacity of
each node, and the work is divided accordingly.

• Dynamic. Assign a set of spots to each node. When a node
finishes, it asks for the next group.

Work in progress 12 / 14



Preliminary results

• Hardware environment. Four nodes with 2 GeForce GTX 480
and 1 Tesla K20c.

• Static. The execution time is 15.24 seconds.

• Dynamic. The best number of spots by node is 16, with 12.53
seconds.

• Metaheuristic M1
with 5 steps of the
generic template for
metaheuristics.

Work in progress Preliminary results 13 / 14



Preliminary results

• Hardware environment. Four nodes with 2 GeForce GTX 480
and 1 Tesla K20c.

• Static. The execution time is 15.24 seconds.

• Dynamic. The best number of spots by node is 16, with 12.53
seconds.

• Metaheuristic M1
with 5 steps of the
generic template for
metaheuristics.

Work in progress Preliminary results 13 / 14



Preliminary results

• Hardware environment. Four nodes with 2 GeForce GTX 480
and 1 Tesla K20c.

• Static. The execution time is 15.24 seconds.

• Dynamic. The best number of spots by node is 16, with 12.53
seconds.

• Metaheuristic M1
with 5 steps of the
generic template for
metaheuristics.

Work in progress Preliminary results 13 / 14



Enhancing Metaheuristic-based Virtual Screening

Methods on Massively Parallel and

Heterogeneous Systems

Baldomero Imbernón1, José M. Cecilia 2 and Domingo Giménez 3

1−2 Polytechnic School
Catholic University of San Antonio of Murcia (UCAM)

Murcia, Spain

3 Department of Computing and Systems
University of Murcia

Murcia, Spain

1bimbernon@alu.ucam.edu, 2jmcecilia@ucam.edu, 3domingo@um.es

March 12, 2016

Work in progress Preliminary results 14 / 14


	Introduction
	Motivation

	Metaheuristics for Virtual Screening
	Parallelization strategy
	Exploiting heterogeneity

	Experimental Setup
	Hardware environment
	Benchmarks and Datasets

	Experimental Results
	Conclusions
	Work in progress
	Preliminary results


