
Motivation One-dimensional problem Two-dimensional problem Perspectives

Parallelizing the computation of Green functions

for computational electromagnetism problems

Carlos Pérez-Alcaraz, Domingo Giménez, Tomás Raḿırez

Departamento de Informática y Sistemas, University of Murcia, Spain

Alejandro Álvarez-Melcón, Fernando D. Quesada

Departamento de Tecnoloǵıa de la Información y las Comunicaciones, Polytechnic

University of Cartagena, Spain

PDSEC Workshop, Shanghai, May 25, 2012



Motivation One-dimensional problem Two-dimensional problem Perspectives

Outline

1 Motivation

2 One-dimensional problem

3 Two-dimensional problem

4 Perspectives



Motivation One-dimensional problem Two-dimensional problem Perspectives

Green functions

Used to solve non homogeneous differential equations with
boundary conditions.

Applied to waveguides, which are used in the design and
analysis of integrated circuits MMIC (Monolithic Microwave
Integrated Circuits).

They can be expressed in the form of infinite series, in the
spatial or spectral domain.

It is necessary to calculate hundreds or thousands of Green
functions.



Motivation One-dimensional problem Two-dimensional problem Perspectives

Application to waveguides

There is a parallel plate guide along the ẑ axis.
Inside this guide is a set of source and observer points which
move in axes ŷ and ẑ .
The Green function associated to each pair of points is
calculated.
The two series in the Ewald method are computed.
The number of terms can be fixed for all the pairs or be
dynamically calculated as a function of the distance between
the two points.



Motivation One-dimensional problem Two-dimensional problem Perspectives

One-dimensional problem

{For each source point}
for i = 1 to m do

{For each observer point}
for j = 1 to n do

{For the number of modes (terms)}
{Calculation of summation in the spectral domain}
for k = 1 to nmod do

trigonometric operations
end for
{Summation of the trigonometric functions}
for k = 1 to nmod do

trigonometric operations
end for
Apply the method of acceleration of Kummer

end for
end for

Cost O (m · n · nmod)



Motivation One-dimensional problem Two-dimensional problem Perspectives

Two-dimensional problem

Initialization: obtain and sort modes
for i = 1 to m do

for j = 1 to n do
{Spectral part}
for k = 1 to nmod do

GF [i , j ]+ = spectral(k)
end for
{Spatial part}
{For images in axes x and y}
for r = −mimag to mimag do

for s = −imag to nimag do
GF [i , j ]+ = spatial(r , s)

end for
end for

end for
end for

Cost O (m · n ·mimag · nimag)



Motivation One-dimensional problem Two-dimensional problem Perspectives

Systems

Low computational cost.
So, multicore+GPU versions are developed.

Experiments in the systems:

Luna: 4 cores + NVIDIA GeForce 9800 GT, 112 cores

geatpc2: 8 cores + NVidia Quadro FX 4600, 96 cores



Motivation One-dimensional problem Two-dimensional problem Perspectives

Computation of the spectral domain in CUDA

global void spectgf cuda kernel (...):
tn = THREADS PER BLOCK ∗ blockId .y + threadId .y
if tn < nmod then
{Compute spectral domain Green functions}
gf [tn, 0] = Direct function
gf [tn, 1] = Derivative respect to z-axis
gf [tn, 2] = Derivative respect to y-axis

end if
end function
{The function calls the kernel}
void spectgf cuda(...):
dim3 grid(1, ⌈nmod/THREADS PER BLOCK⌉)
dim3 block(1, THREADS PER BLOCK )
spectgf cuda kernel<<<grid, block>>>(...)
end function



Motivation One-dimensional problem Two-dimensional problem Perspectives

One-dimensional implementations

1D-OMP-FG: A fine grain version with OpenMP. The two
innermost loops are parellelized.

1D-OMP-CG: Coarse grain parallelism with OpenMP,
parallelizing the work in the outermost loop.

1D-CUDA: The computation of each Green function (fine
grain parallelism) is performed by the GPU.

1D-OMP+CUDA: Hybrid implementation. In a
shared-memory program (with OpenMP) the number of
threads generated is one more than the number of cores. One
of the threads is in charge of calling the CUDA kernel. The
other threads follow the coarse grain shared-memory scheme.



Motivation One-dimensional problem Two-dimensional problem Perspectives

Speed-up

For large problem sizes the speed-ups of the OpenMP implementations
are satisfactory.

The CUDA version has very low speed-up, with a high initialization cost.

The best results are obtained by combining OpenMP and CUDA, with
speed-ups higher than the number of cores.



Motivation One-dimensional problem Two-dimensional problem Perspectives

Systems

Higher computational cost.
OpenMP, MPI and CUDA versions.

New systems considered:

Ben: cc-NUMA with 128 cores

Arabı́: 102 nodes, each 8 cores

Hipatia: 14 nodes, each 8 cores + 2 nodes, each 16 cores.
2 nodes of 8 cores used



Motivation One-dimensional problem Two-dimensional problem Perspectives

CUDA kernel for the computation of the spatial part

global void spectgf cuda kernel (...):
mima = blockIdx.x {mima in [0,2mimag+1]}
nima = threadIdx.x {nima in [0,2nimag+1]}
mima -= gridDim.x / 2 {mima in [-mimag ,mimag ]}
nima -= blockDim.x / 2 {nima in [-nimag ,nimag ]}
...
Calculate spatial gf(mimag , nimag)



Motivation One-dimensional problem Two-dimensional problem Perspectives

Two-dimensional implementations

2D-OMP: Parallelizing the first loop of the spatial part. The
access to some variables to store partial results is done by
reduction.

2D-CUDA: Each thread is in charge of the computation of
one image. An auxiliary matrix is used to store the partial
sum obtained by each thread, and the values in the matrix are
added sequentially.

2D-MPI: The spatial part is parallelized, and the spectral
part is done sequentially, like with OpenMP, and the final sum
is obtained with MPI Reduce.



Motivation One-dimensional problem Two-dimensional problem Perspectives

Speed-up

Large speed-up of the CUDA algorithm for large problems.

The points at which the CUDA algorithm is preferable change for
different computational systems.



Motivation One-dimensional problem Two-dimensional problem Perspectives

Scalability

For very large problems it may be preferable to use a large system
(shared-memory or distributed-memory), but this cames at a high cost.

For small problems the best results are obtained with a number of threads
or processes lower than the number of cores in the system, and the
optimum number of processes changes for different systems.



Motivation One-dimensional problem Two-dimensional problem Perspectives

dimension
Prob. size One Two Three
small sequential OpenMP OpenMP+CUDA?
medium OpenMP OpenMP+CUDA MPI?
large OpenMP+CUDA MPI MPI+OpenMP+CUDA?

It is necessary to select

the preferred algorithm

the optimum number of cores

depending on the system and the problem size (the number of
modes, points and images).



Motivation One-dimensional problem Two-dimensional problem Perspectives

Modelling CPU+GPU computation ?

Design: extend the ideas of modelling in multicore:

ts

c + sg/cg
+ tscc + tskg

ts sequential time
c , g number of cores and of GPUs
sg/c speed-up of one GPU with respect to one core for the
problem in question
tsc , tsk cost of generation of one core and one kernel

Installation: use some installation methodology to estimate the
values of the parameters in a particular system.

Execution: for a particular input (problem size) and in a particular
system (the computational system+the implemented algorithms)
select the algorithm and the part of the computational system to
use in the solution of the problem.



Motivation One-dimensional problem Two-dimensional problem Perspectives

Modelling CPU+GPU computation ?

Design: extend the ideas of modelling in multicore:

ts

c + sg/cg
+ tscc + tskg

ts sequential time
c , g number of cores and of GPUs
sg/c speed-up of one GPU with respect to one core for the
problem in question
tsc , tsk cost of generation of one core and one kernel

Installation: use some installation methodology to estimate the
values of the parameters in a particular system.

Execution: for a particular input (problem size) and in a particular
system (the computational system+the implemented algorithms)
select the algorithm and the part of the computational system to
use in the solution of the problem.



Motivation One-dimensional problem Two-dimensional problem Perspectives

Modelling CPU+GPU computation ?

Design: extend the ideas of modelling in multicore:

ts

c + sg/cg
+ tscc + tskg

ts sequential time
c , g number of cores and of GPUs
sg/c speed-up of one GPU with respect to one core for the
problem in question
tsc , tsk cost of generation of one core and one kernel

Installation: use some installation methodology to estimate the
values of the parameters in a particular system.

Execution: for a particular input (problem size) and in a particular
system (the computational system+the implemented algorithms)
select the algorithm and the part of the computational system to
use in the solution of the problem.


	Motivation
	One-dimensional problem
	Two-dimensional problem
	Perspectives

