Improving Linear Algebra Computation on NUMA platforms through auto-tuned nested parallelism

Javier Cuenca, Luis P. García, Domingo Giménez

Parallel Computing Group
University of Murcia, SPAIN
Introduction

- Scientific and engineering problems are solved with large parallel systems
- In some cases those systems are NUMA
 - A large number of cores
 - Share a hierarchically organized memory
- Kernel of the computation for those problems: BLAS o similar
 - Efficient use of routines → a faster solution of a large range of scientific problems
- Normally: multithreaded BLAS library optimized for the system is used, but:
 - If the number of cores increases → the degradation in the performance grows
- In this work:
 - Analysis of the behaviour in NUMA of the matrix multiplication of the BLAS
 - Its combination with OpenMP to obtain nested parallelism
 - An auto-tuning method → a reduction in the execution time
Outline

- Introduction
- Computational systems
- The software
- Motivation
- Automatic optimisation method
 - Design phase
 - Installation phase
 - Execution phase
- Conclusions and future work lines
Computational systems

- **Ben**
 - Part of the system Ben-Arabí of the Supercomputing Center of Murcia.
 - A shared-memory system with 128 cores.
 - HP Integrity Superdome with architecture NUMA
 - Hierarchical composition with crossbar interconnection.
 - Each computing node:
 - an SMP with four CPUs dual core Itanium-2
 - an ASIC controller to connect the CPUs with the local memory and the crossbar commuters
 - Access to the memory is non-uniform: Four different costs in the access to the shared-memory.

- **Pirineus**
 - A system at the Centre de Supercomputacio de Catalunya.
 - An SGI Altix UV 1000
 - a total of 224 Intel Xeon six-core serie 7500 (1344 cores)
 - An interconnection NUMAlink 5 in a paired node 2D torus.
 - The access to the memory is non-uniform
Outline

- Introduction
- Computational systems
- The software
- Motivation
- Automatic optimisation method
 - Design phase
 - Installation phase
 - Execution phase
- Conclusions and future work lines
The software

- The matrix multiplication routine used: the double precision routine `dgemm`.
- The BLAS implementation of the Intel MKL toolkit used is the version 10.2.
- The libraries are multithreaded: calling the routine with the desired number of threads:
 - If dynamic parallelism is enabled, the number of threads is decided by the system (less than or equal to that established).
- The C compiler used was Intel icc version 11.1 in both platforms.
- Two-level parallelism:
 - A number of OpenMP threads + calls to the multithreaded BLAS.
- Matrices A and B can be multiplied with two-level parallelism:
 - \(q \) threads OpenMP.
 - Each thread multiplying a block of adjacent rows of matrix A by the matrix B.
 - Establishing a number of threads (\(p \)) to be used in the matrix multiplication in each OpenMP thread.
Outline

- Introduction
- Computational systems
- The software
- **Motivation**
- Automatic optimisation method
 - Design phase
 - Installation phase
 - Execution phase
- Conclusions and future work lines
Motivation

- Using a multithreaded version of BLAS → the \texttt{dgemm} MKL routine
- The optimum numbers of threads changes from one platform to another and for different problem sizes.
- Default option (number of threads = available cores) is not good
Motivation

- **Dynamic Selection of threads:**
 - Reduction in the speed-up increases with the number of OpenMP threads
 - Number of MKL threads used is just one

- **No Dynamic Selection of threads:**
 - bigger speed-ups are obtained
 - Number of OpenMP threads grows \rightarrow an increase of the speed-up until a maximum
 - So, a large number of cores \rightarrow a good option to use a high number of OpenMP threads
Outline

- Introduction
- Computational systems
- The software
- Motivation
- Automatic optimisation method
 - Design phase
 - Installation phase
 - Execution phase
- Conclusions and future work lines
Automatic optimisation method

- Automatic Tuning System (ATS) focused on modelling the execution time

\[T_{exe} = f(n, SP, AP) \]

- \(n \): the problem size
- \(SP \): System Parameters. Characteristics of the platform (hardware + basic installed libraries)
- \(AP \): Algorithmic Parameters. Values chosen by the ATS to reduce the execution time

- An adaptation to large NUMA platforms:
 - Each arithmetic operation: data access time depends on the relative position in memory space
 - Data can be in the closest memory of the processor or in that of another processor
 - The interconnection network could be non homogeneous
 - Therefore
 - those data could be at different distances from the processor that needs them
 - the access time is modelled with a hierarchical vision of the memory
 - It is also necessary to take into account the migration system of the platform
Outline

- Introduction
- Computational systems
- The software
- Motivation
- Automatic optimisation method
 - Design phase
 - Installation phase
 - Execution phase
- Conclusions and future work lines
Automatic optimisation method

Design phase: modelling the execution time of the routine

Modelling 1-Level: MKL multithreading dgemm without generating OpenMP threads

- Model:
 $$T_{\text{dgemm}} = \frac{2n^3}{p} k_{\text{dgemm}}$$

- AP: $p \rightarrow$ Number of threads inside the MKL routine dgemm
- SP: $k_{\text{dgemm}} \rightarrow$ time to carry out a basic operation inside the MKL routine dgemm
 (including memory accesses). Taking into account the data migration system:
 $$k_{\text{dgemm}} = a k_{\text{dgemm_NUMA}}(p) + (1 - a) k_{\text{dgemm_M}}$$

- $k_{\text{dgemm_M_1}}$: operation time when data are in the closest memory to the operating core
- $k_{\text{dgemm_NUMA}}$: operation time when data are in any level of the RAM memory
- α: weighting factor
 - directly proportional to the use by each thread of data assigned to the other ($p-1$) threads
 - inversely proportional to the reuse degree of data carried out by the routine (dgemm)

$$\alpha = \min \left\{ 1, \frac{p(p-1)}{n^3} \right\}$$
Automatic optimisation method

Design phase: modelling the execution time of the routine

Modelling 1-Level: MKL multithreading dgemm without generating OpenMP threads

- Platform:
 - H memory levels
 - c_i cores have a similar access speed to the level l, with $1 \leq l \leq H$

- $k_{\text{dgemm_NUMA}}$ value can be modelled, depending on p:
 - If $0 < p \leq c_1$:
 \[k_{\text{dgemm_NUMA}}(p) = k_{\text{dgemm_M}} \]
 - else if $c_1 < p \leq c_2$:
 \[k_{\text{dgemm_NUMA}}(p) = \frac{c_1 k_{\text{dgemm_M}} + (p - c_1)k_{\text{dgemm_M}}}{p} \]
 - ..., in general, if $c_{H-1} < p \leq c_H$:
 \[k_{\text{dgemm_NUMA}}(p) = \frac{\sum_{i=0}^{H-2} (c_i - c_{i-1})k_{\text{dgemm_M}} + (p - c_{H-1})k_{\text{dgemm_M}}}{p} \]
Automatic optimisation method

Design phase: modelling the execution time of the routine

Modelling 2-Level: OpenMP threads + MKL multithreading \(\text{dgemm} \)

- **Model:**
 \[
 T_{2L_{-dgemm}} = \frac{2^n}{q} \frac{nn}{p} k_{2L_{-dgemm}} = \frac{2n^3}{R} k_{2L_{-dgemm}}
 \]

- **AP:** \(R = pxq \) threads interactuating
 - \(p \rightarrow \) Number of threads inside the MKL routine \(\text{dgemm} \)
 - \(q \rightarrow \) Number of OpenMP threads

- **SP:** \(k_{2L_{-dgemm}} \rightarrow \) time to carry out a basic operation
 \[
 k_{2L_{-dgemm}} = \alpha k_{2L_{-dgemm} \text{NUMA}}(R,p) + (1-\alpha)k_{2L_{-dgemm} \text{NUMA}}(p)
 \]
 \[
 k_{2L_{-dgemm} \text{NUMA}}(R,p) = \frac{k_{\text{dgemm} \text{NUMA}}(R) + k_{\text{dgemm} \text{NUMA}}(p)}{2}
 \]
 \[
 \alpha = min\left\{1, \frac{R(R-1)}{n^3/n^2}\right\}
 \]
Outline

- Introduction
- Computational systems
- The software
- Motivation
- Automatic optimisation method
 - Design phase
 - Installation phase
 - Execution phase
- Conclusions and future work lines
Automatic optimisation method
Installation phase: experimental estimation of the SP values

- General process: calculating the SP values that appear in the model
- SP values to calculate: $k_{dgemm_M1}, \ldots, k_{dgemm_ML}$
- For each memory level l, $1 \leq l \leq H$:

 1. Executing $dgemm$ → experimental execution time:
 - for a fixed (preferably small) problem size, n
 - for a number of threads, p_l, with $c_{l-1} < p_l \leq c_l$

 2. This experimental execution time routine model
 - α value

 3. k_{dgemm_NUMA} for p_l
 - k_{dgemm_NUMA} model
 - values of $k_{dgemm_M1}, \ldots, k_{dgemm_ML-1}$

 k_{dgemm_NUMA} for p_l

 k_{dgemm_ML}
Automatic optimisation method

Installation phase: experimental estimation of the \(SP \) values

Comparison execution vs. modelled time in platform Ben

![Graphs showing execution time vs. modelled time for different n values.](image)
Automatic optimisation method
Installation phase: experimental estimation of the SP values
Comparison execution vs. modelled time in platform Pirineus
Outline

- Introduction
- Computational systems
- The software
- Motivation
- Automatic optimisation method
 - Design phase
 - Installation phase
 - Execution phase
- Conclusions and future work lines
Automatic optimisation method
Execution phase: Selection of the AP values

- To solve a problem with size n in a concrete platform:
 - The ATS takes the model of the routine, the SP values calculated for this platform and the value n, and selects directly the most appropriate values for the AP (number of OpenMP threads, q, and MKL threads, p)

<table>
<thead>
<tr>
<th>size</th>
<th>SEQ</th>
<th>MIN-MKL</th>
<th>MC-MKL</th>
<th>AUTO</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Ben</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1000</td>
<td>0.320</td>
<td>0.024</td>
<td>0.091</td>
<td>0.012 (2×8)</td>
</tr>
<tr>
<td>2000</td>
<td>2.60</td>
<td>0.12</td>
<td>0.39</td>
<td>0.07 (4×16)</td>
</tr>
<tr>
<td>3000</td>
<td>8.60</td>
<td>0.32</td>
<td>0.82</td>
<td>0.23 (4×16)</td>
</tr>
<tr>
<td>4000</td>
<td>20.22</td>
<td>0.59</td>
<td>1.40</td>
<td>0.74 (4×32)</td>
</tr>
<tr>
<td>5000</td>
<td>40.23</td>
<td>1.12</td>
<td>2.11</td>
<td>1.44 (4×32)</td>
</tr>
<tr>
<td></td>
<td>Pirineus</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1000</td>
<td>0.224</td>
<td>0.034</td>
<td>0.441</td>
<td>0.021 (16×4)</td>
</tr>
<tr>
<td>2000</td>
<td>1.74</td>
<td>0.48</td>
<td>1.19</td>
<td>0.25 (8×8)</td>
</tr>
<tr>
<td>3000</td>
<td>5.46</td>
<td>0.39</td>
<td>1.31</td>
<td>0.39 (8×8)</td>
</tr>
<tr>
<td>4000</td>
<td>13.14</td>
<td>0.54</td>
<td>1.89</td>
<td>0.95 (8×8)</td>
</tr>
<tr>
<td>5000</td>
<td>25.12</td>
<td>1.13</td>
<td>2.65</td>
<td>1.02 (8×16)</td>
</tr>
</tbody>
</table>
Outline

- Introduction
- Computational systems
- The software
- Motivation
- Automatic optimisation method
 - Design phase
 - Installation phase
 - Execution phase
- Conclusions and future work lines
 Behaviour of MKL matrix multiplication analysed in 2 NUMA platforms
 Number of threads equal to number of cores: Not always the best option
 Big problems in Large Systems \(\rightarrow \) OpenMP+MKL is a good option
 So, a reduction in the execution time of scientific codes
 - intensively use matrix multiplications or linear algebra routines based on them
 - adequately selecting the threads to be used in the solution of the problem
 This selection: performed automatically by the auto-tuning system
 - Using a model of the execution time of each routine for each platform.
 Future:
 - Same methodology applied to other routines in linear algebra libraries
 - Different numbers of threads in different parts of the program
 - Multi-fabric libraries: routines run differently, depending on the problem