On the behaviour of the MKL library in multicore
shared-memory systems

Domingo Giménez Alexey Lastovetsky
Departamento de Informatica School of Computer Science
y Sistemas and Informatics

Universidad de Murcia University College Dublin

Jornadas de Paralelismo, Valencia, Septiembre 2010

Motivation

Matrix multiplication on platforms composed of multicore

The goal:

@ To identify the shape matrix multiplication has in a multicore
as a function of the problem size and the number of threads,
to decide the number of threads to use to obtain the lowest
execution time

Motivation

Matrix multiplication on platforms composed of multicore

The goal:

@ To identify the shape matrix multiplication has in a multicore
as a function of the problem size and the number of threads,
to decide the number of threads to use to obtain the lowest
execution time

@ To use this information to develop two-level
(OpenMP+BLAS) versions of the multiplication,
and select the number of threads in each level

Motivation

Matrix multiplication on platforms composed of multicore

The goal:

@ To identify the shape matrix multiplication has in a multicore
as a function of the problem size and the number of threads,
to decide the number of threads to use to obtain the lowest
execution time

@ To use this information to develop two-level
(OpenMP+BLAS) versions of the multiplication,
and select the number of threads in each level

@ To use this information to develop three-level
(MPI+OpenMP+BLAS) versions,
and select the number of processes and threads in each level

Motivation

Matrix multiplication on platforms composed of multicore

The goal:

@ To identify the shape matrix multiplication has in a multicore
as a function of the problem size and the number of threads,
to decide the number of threads to use to obtain the lowest
execution time

@ To use this information to develop two-level
(OpenMP+BLAS) versions of the multiplication,
and select the number of threads in each level

@ To use this information to develop three-level
(MPI+OpenMP+BLAS) versions,
and select the number of processes and threads in each level

@ To use this information to develop heterogeneous/distributed
three-level (MPI4+OpenMP+BLAS) versions,
and select the number of processes and its distribution or the
data partition, and in each processor the number of threads in
each level

Systems

Systems, basic components

name architecture icc MKL
rosebud05 4 ltanium dual-core 11.1 10.2
8 cores
rosebud09 1 AMD quad-core 11.1 10.2
4 cores
hipatia8 2 Xeon E5462 quad-core 10.1 10.0
8 cores
hipatial6 4 Xeon X7350 quad-core 10.1 10.0
16 cores
arabi 2 Xeon L5450 quad-core 11.1 10.2
8 cores
ben HP Integrity Superdome 11.1 10.2
128 cores
bertha IBM 16 Xeon X7460 hexa-core 11.0 11.0

96 cores

Systems

Systems

@ Rosebud (Polytechnic Univ. of Valencia):
cluster with 38 cores
2 nodes single-processors, 2 nodes dual-processors, 2 nodes with 4
dual-core, 2 nodes with 2 dual-core, 2 nodes with 1 quad-core
@ Hipatia (Polytechnic Univ. of Cartagena):
cluster with 152 cores
16 nodes with 2 quad-core, 2 nodes with 4 quad-core, 2 nodes with
2 dual-core
@ Ben-Arabi (Supercomputing Centre of Murcia):
Shared-memory + cluster: 944 cores
Arabi: cluster of 102 nodes with 2 quad-core
Ben: HP Superdome, cc-NUMA with 128 cores

@ Bertha (INRIA Bordeaux Ouest):
Shared-memory cc-NUMA: 96 cores
4 nodes, each node 4 processors, each processor hexa-core

Systems

Ben architecture

Hierarchical composition with crossbar interconnection.

Two basic components: the computers and two backplane crossbars.

Each computer has 4 dual-core Itanium-2 and a controller to connect the CPUs
with the local memory and the crossbar commuters.

The maximum memory bandwidth in a computer is 17.1 GB/s and with the
crossbar commuters 34.5 GB/s.

The access to the memory is non uniform and the user does not control where
threads are assigned.

DL A

Systems

Bertha architecture

Systems

Bertha architecture

Machine (191GB)

NUMANode #0 (48GB)

Socket #0
L3 #0 (16MB)
L2 #0 (3072KB) L2 #1 (3072KB) L2 #2 (3072KB)
L1 #0 (32KB) L1 #1 (32KB) L1 #2 (32KB) L1 #3 (32KB) L1 #4 (32KB) L1 #5 (32KB)
Core #0 Core #1 Core #2 Core #3 Core #4 Core #5

PU #0 PU #1 PU #2 PU #3 PU #4 PU #5

Using MKL

Using MKL

@ The library is multithreaded.

@ Number of threads estabished with the environment variable
MKL_NUM_THREADS or in the program with the function
mkl_set_num_threads.

@ Dynamic parallelism is enabled with MKL_DYNAMIC=true or
mkl_set_dynamic(1). The number of threads to use in
dgemn is decided by the system, and is less or equal to that
established.

@ To enforce the utilisation of the number of threads, dynamic
parallelism is turned off with MKL_DYNAMIC=false or
mkl_set_dynamic (0).

MKL, results

speed-up

rosebud05
El
2 e
3
5
a
3
inf
1
o
2 3456 7 8B 9 101112
threads
rosebud09
0
2 3 4 5 6
threads

& 250

v 750
& 1000
= 2000
<} 3000
= 4000
= 5000

- 250
“®- 500
v 750
& 1000
= 2000
<I 3000
= 4000
= 5000

arabi

speed-up

2 3 45 6 7 8 8 101112
threads
arabi
10
9
8
7
s B = 2000
= & - 3000
%4 ¥ g000
a3 A" 5000
2
1
o
2 3 4 56 7 8 9101112

threads

Using MKL

Using MKL

MKL, results

ben
hipatia8

8

i v n.

8 77 H = 2000
=B & 500 H - 3000
4 - 1000 -3 ¥ 2000
E 3 V' 4000 g & 5000
L “dr 800D

1 5 11 17 23 29 35 41 47 53

0 2 8 14 20 26 32 38 44 50 56

2 345 6 78 9101112 # cores
threads
bertha
18
16
14
12
10 X K = 2000
8 T o 3000
V- 4000
6 &= 5000
4
2
0

8 16 32 48 64 80 96

Using MKL

MKL, results
size ‘ Seq. Max. Low.
size‘ Seq. Max. Low. bertha
rosebud05 1000 | 025 050 0.058 (16)
250 | 0.0081 0.0042 0.0019 (11) 2000 | 1.8 035 0.15(80)
— 5 3000 | 62 12 0.67 (32)
250 | 0.0042 0.0050 _ 0.0012 (5) 4000 15 19 13(32)
hipatia8 ben
250 | 0.021 0.017 0.0014 (10
250 | 0.0035 0.0021 0.0011 (7) 500 | 0042 0.033 0.0044§19§
500 | 0.026 0.0088 0.0056 (9) 750 | 014 0063 0010 (22)
/50| 0087 0021 0017 ©) 1000 | 0.32 0.094 0.019 (27)
arabi 2000 | 26 039 0.12(37)
250 | 0.0080 0.0015 0.0013 (9) 3000 | 86 082 030 (44)
500 | 0.034 0.063 0.0049 (12) 4000 | 20 14 059 (50)
5000 | 40 2.1 1.0 (48)

Using MKL

Two-level parallelism

It is possible to use two-level parallelism: OpenMP + MKL.

The rows of a matrix are distributed to a set of OpenMP threads
(nthomp).

A number of threads is established for MKL (nthmkl).

Nested parallelism must be allowed, with OMP_NESTED=true or
omp_set_nested(1).

omp_set_nested(1);
omp_set_num_threads(nthomp);
mkl_set_dynamic(0);
mkl_set_num_threads(nthmkl);
#pragma omp parallel
obtain size and initial position of the submatrix of A to be
multiplied
call dgemm to multiply this submatrix by matrix B

Using MKL

Two-level parallelism, results

rosebud05

speed-up
GahuwbuoNDe

1-8 24 43 B1 1-8 24 4-2 81

hipatiaig
thr. OpanMP - # thr. MKL / without -with dynamic

hipatiag

=
a

E e
B - 2000
3 : g 4 @ 4000
Ej, . '] © 6000

: I] O no il

=

'

I]I]

28 82 6 44 16
148" 44 16 82
L e s L P SR # thr. OpenMP - # thr. MKLfmmom-wnh dynamic
thr. OpenMP - # thr. MKL / without - with dynamic ben
arabi 18
= 1
. 14
£, [
i - i - 1000
; e
E: B 5000 =
i 4
: - i
: 1] : o
+8 24 42 81 1-8 24 42 81 28 82 1-16 449
thr. OpenMP - # thr. MKL / without -with dynamic 116 44 16-1 28 M

hipatiai6 # thr. OpenMP - # thr. MKL / without - with dynamic

Using MKL

Two-level parallelism, results

rosebud05 hipatia16
1,2 1,2
1 1
0,8 o 08
$ e H 10000 2 e H 10000
'§ ' B 15000 g ' ’ B 15000
g 04 [20000 g o4 ’ £ 20000
0,2 0,2
0 0
2-4 42 81 28 44 82 1641
OpenMP - # MKL # threads OpenMP - # threads MKL
arabi ben
1,2 2
1
: 1,5
o 08 o
3 H 10000 3 el
T 06 T 1 B 15000
8 H 15000 8
[20000
2 04 1 20000 2
0,5 M 25000
0.2

0
2-324-16 8-8 16-4 32-2 64-1

Two-level parallelism, results

bertha
14
12
10
8 M 1000
s H 2000
g 6 [3000
[
2 4 I 4000
> h H 5000
0 I
2-8 82 116 44 16-1
1-16 44 161 2-8 8-2
#thr. OpenMP-#thr. MKL / without-with dynamic

speed-up

Using MKL

bertha

1,8
1,6
1,4
1,2

1 H 3000
0,8 M 4000
0,6 [0 s000
0,4
0,2

o

2-32 4-16 8-8 16-4 32-2 64-1

threads OpenMP - # threads MKL

Using MKL

Two-level parallelism, conclusions

@ In Hipatia (MKL version 10.0) the nested parallelism seems to
disable the dynamic selection of threads.

@ In the other systems, with dynamic assignation the number of
MKL threads seems to be one when more than one OpenMP
threads are running.

@ When the number of MKL threads is established in the
program bigger speed-ups are obtained.

@ Normally the use of only one OpenMP thread is preferable.

@ In large systems it is preferable to use a higher number of
OpenMP threads: in Ben a speed-up between 1.2 and 1.8 is
obtained with 16 OpenMP and 4 MKL threads, in Bertha
between 1.4 and 1.6 with 8 and 8 threads.

Two-level parallelism, results

Using MKL

ben bertha
size MKL 2-levels Sp. MKL 2-levels Sp.
250 0.0014 (10) 0.0014 (1-10) 1.0
500 0.0044 (19) 0.0043 (4-11) 1.0
750 0.010 (22) 0.0095 (4-11) 1.1
1000 0.019 (27) 0.015 (4-10) 1.3 | 0.058 (16) 0,014 (2-24) 4.2
2000 0.12 (37) 0.072 (4-16) 1.6 | 0.15(80) 0.053 (5-16) 2.8
3000 0.30 (44) 0.18 (4-24) 1.7 | 0.67 (32) 0.51 (16-3) 1.3
4000 0.59 (50) 0.41 (5-16) 1.4 1.3 (32) 0.98 (5-16) 1.3
5000 1.0 (48) 0.76 (6-20) 1.3 1.9 (48) 1.7 (3-32) 1.2
10000 10 (64) 5.0 (32-4) 2.0
15000 25 (64) 12 (32-4) 2.1
20000 65 (64) 22 (16-8) 3.0
25000 130 (64) 44 (16-8) 3.0

Using MKL

Two-level parallelism, surface shape, in Ben

Execution time with matrix size 5000
only times lower than 1/10 the sequential time

Using MKL

Two-level parallelism, results

Similar results are obtained with other compilers and libraries.

Ben: gcc 4.4 and ATLAS 3.9.

ben
] M icc+mkl
M gcc+mkl
[icc+atlas
M gcc+atlas
0 I]

2-324-16 8-8 16-432-264-1
threads OpenMP - # threads MKL

= 0.
- El N o

speed-up

=}
o

Matrix

multiplication: research lines

Development of a 2IBLAS prototype,

and application to scientific problems

Simple MPI+OpenMP+MKL version

Experiments in large shared-memory (ben), large clusters (arabi), and
heterogeneous (rosebud)

ScalLAPACK style MPI4+OpenMP+MKL version

Determine number of processors, and OpenMP and MKL threads
From the model and empirical analysis or with adaptive algorithm

In heterogeneous platform the number of processes per processor

HoHe ScaLAPACK style MPI+OpenMP+MKL version

Determine volume of data for each processors, and OpenMP and MKL
threads

From the model and empirical analysis or with adaptive algorithm

Distributed style MPI+-OpenMP+MKL version

Using MKL

Using MKL

Questions?

. and if somebody has access to large cc-NUMA systems, you
could repeat some of the tests (code in
http://www.um.es/pcgum) and send me (domingo@um.es) the
results

thanks!

	Motivation
	Systems
	Using MKL

