Computation in heterogeneous-hierarchical environments

Project COPABIB:
Univ. Alicante, Castellón, La Laguna, Murcia, Polytechnic of Valencia
Spain

European Network ComplexHPC, October 2009, Lisbon
Contents

1. Networks
2. Spanish project COPABIB
3. Group Murcia
4. Group Polit. Valencia
5. Group La Laguna
Spanish Network

High Performance Computation in Heterogeneous Architectures (CAPAPAP-H), approximately 20 universities, organisms and companies
Spanish groups in the European Network

13 centres: Numerical Analysis 4, Libraries 2, Mapping 6, Applications 9
Spanish project COPABIB

Automatic Building and Optimization of Parallel Scientific Libraries
Spanish project COPABIB: research lines

- **Specification of problems, algorithms and architectures**: mathematical formulation and tag-based languages to define specification languages

- **Software tools for transformation**: translators, symbolic processors and skeletons to obtain libraries from specifications

- **Matrix algebra libraries**: libraries for dense and sparse linear algebra

- **Libraries of dynamic programming for optimization problems**: libraries for discrete mathematics problems

- **Optimization environments**: models, simulators, analyzers, tuning for linear algebra and optimization

- **Tools for the construction of high-level interfaces**: tools to assist in the construction of interfaces to provide user-friendly access to the libraries

- **Scientific applications**: interdisciplinary applications using the previous results
Scientific Computing and Parallel Programming

2 doctors + 10 PhD students, from:
Universidad Católica de Murcia
Centro de Supercomputación de Murcia
Marine studies company
Universidad Politécnica de Cartagena
Universidad Miguel Hernández de Elche
Universidade Federal do Estado da Bahia

- Information
 - Group page:
 http://www.um.es/pcgum/
 - Publications:
 http://dis.um.es/~domingo/investigacion.html
Research lines

- Mathematical and statistical modelling of scientific problems
- Development of efficient or approximated (methaeuristic) algorithms to solve these problems
- Software optimization, autotuning
- Parallel computing
 - Parallel matrix computing
 - Parallel algorithms and algorithmic schemes
 - Optimization and autooptimization of parallel software
 - Adaptation of parallel software to heterogeneous and hierarchical systems
 - Applications of parallel computing
Parallel computing

- Parallel matrix computation
 - Modelling and automatic optimization of parallel matrix algorithms in systems of different characteristics
- Parallel algorithmic schemes
 - Modelling and automatic optimization of parallel algorithmic schemes in systems of different characteristics
- Parallel computing applications
 - Simulation of marine bio-systems - Taxon Estudios Ambientales
 - Simultaneous equation models - Temporal series group, applications for medicine and psychology
 - Design of signal filters - Computational electromagnetic group
 - Regional meteorology simulations - Regional climate modelling group
 - ...
Interdisciplinary Computation and Communication Group (INCO2)

6 doctors + 6 PhD students, from:
 Spain
 Cuba
 Mexico
 Brazil

- Information
 - Group page:
 http://users.dsic.upv.es/grupos/inco2/
Research lines

- High Performance Computing applied to Numerical Linear Algebra problems
 Eigenvalue problems, svd, structured problems, . . .

- Heterogeneous Parallel Computing
 Development and optimization of parallel algorithms on clusters, multicore computers, GPUs, . . .

- High Performance Computing applied to Communication problems
 Signal processing, detection, design of devices, . . .
Projects

- Spatial audio systems based on Massive parallel processing of multichannel acoustic signals with General Purpose-Graphics Processing Units (GP-GPU) and Multicores (with the GTAC-iTeam Group in UPV)

- Automatic Building and Optimization of Parallel Scientific Libraries (with the universities of La Laguna, Jaume I of Castellón, Alicante, Murcia, University College Dublin)

- High performance computing and architectures in signal processing problems (with the university Jaume I of Castellón and the GTAC-iTeam in UPV)
Possible collaborations

- Application of Parallel Numerical Linear Algebra in Engineering: signal processing, detection, electromagnetic problems, design of new devices, ...
- Software optimizations for multicores, GPUs, Clusters...
- Simulation in Engineering...
- Efficient solution of scientific problems: modeling, algorithms, approximate solutions, parallelism...
- Sequential and parallel algorithmic schemes and their optimization and autotuning
High Performance Computing Group ULL (CAPULL)

- 6 doctors
- 7 PhD students

Information
 Group page:
 http://cap.pcg.ull.es/
Research lines - High Performance Computing Group ULL (CAPULL)

- Parallel Computing and Heterogeneous Systems
- Modeling, Instrumentation and Performance Analysis
- Parallelization of Scientific Applications - Combinatorial Optimization Problems
 - Parallelization of the GEANT 4 Simulation Code in cooperation with CIEMAT.
- Tools and Frameworks for Parallel Computing
 - Skeletal Programming
 - DPSKEL
 - llc
 - Cloud Computing - Web Services - OpenCF
DPSKEL: The Goal

- Skeletons that can be architectural independent
- A specification language describing the domain of the application, independent of the architecture.
- Transformers of data documents expressed in that language as instances for the skeleton.
DPSKEL: Skeletons for Dynamic Programming

- No need for codification. The user specifies the problem and does not codify the algorithm.
- Independence from specific programming languages or skeleton libraries. Once the problem has been specified, it can be transformed into several implementation proposals.
- Delivery of new applications due to the rapid development time.
- Improved application quality.
- Increased use of parallel architectures by non-expert users.
- Rapid inclusion of emerging technology into their systems. New transformers can be delivered when needed.
DPSKEL: The Architecture

\[KP \equiv \left\{ \begin{array}{l}
 \text{Input Data} = \{ n \in N, C \in N, p_k \in N; k \in \{1\ldots n\}, w_k \in N; k \in \{1\ldots n\} \} \\
 \text{Output Data} = \{ x_k \in \{0,1\}; k \in \{1\ldots n\} \} \\
 \text{DP Recurrence} = f_{kc} = \left\{ \begin{array}{ll}
 p_k & \Rightarrow d_k = 1 \\
 0 & \Rightarrow d_k = 0 \\
 \max \{ f_{k-1c}, d_k = 0, f_{k-1c-w_k} + p_k \} & \Rightarrow d_k = 1
 \end{array} \right. \\
\end{array} \right. \]

From Latex specifications to parallel codes

Save as XML

MathML

Transformer

DPSPEC

Transformer

DPSKEL

OpenMP, MPI, OpenMP + MPI, etc.

Parallel Architectures
llc

llc: La Laguna C

llc is a high-level parallel language that aims to combine and exploit the best features of both MPI and OpenMP.

http://llc.pcg.ull.es

- llc follows the simplicity of OpenMP and avoids its well-known drawbacks.
- An OpenMP code cannot be ported to distributed memory architectures.
- In llc the code annotated with parallel directives is compiled with llCoMP, the llc compiler-translator.
- llCoMP produces an efficient and portable parallel source code, valid for shared, distributed memory and hybrid architectures.
llc

llc: features

- ANSI C syntax
- Parallelism is expressed using compiler directives (\#pragma)
- The language implements a basic set of parallel constructs
- OpenMP-like syntax: llc extends OpenMP to distributed memory and it is compatible with its directives and clauses
- A small set of llc directives is added
- The language is based on Collective Computational Model (OTOSP)
Main llc constructs

- **Parallel loops / forall:**
 - `#pragma omp for`

- **Parallel Sections:**
 - `#pragma omp sections`
 - `#pragma omp section`

- **Pipelines:**
 - `#pragma llc pipeline`

- **Workqueues:**
 - `#pragma intel omp taskq`
 - `#pragma intel omp task`
The 11CoMP translation process
Cloud Computing - OpenCF: The Goal

- To provide an easy, standard and free solution
- An user friendly interfaz
- Open and collaborative project
- Modular and extensible solution
OpenCF: Open Computational Framework

- Implemented as a (web) gateway to computational systems

Free Open Source Application

- Licenced under GPL
- Downloadable from http://opencf.pcg.ull.es
 - Available as a Debian package or as a .tar.gz file
- Access to the code repository (*subversion*)

Developed using lightweighted technologies

- Implemented in PHP, Perl and Python
- Only the interpreters and server modules are needed
- OpenCF is mainly composed of two modules: the client and the server.
- The client module is the interfaz access to the system and implements services independent from the HPC.
- The server implements the actual web service. Implements the services depending on the HPC.
OpenCF: A proof of concept