
0018-9162/07/$25.00 © 2007 IEEE70 Computer P u b l i s h e d b y t h e I E E E C o m p u t e r S o c i e t y

R E S E A R C H F E A T U R E

Researchers have developed high-level languages and
interfaces, such as Cg and Brook for GPUs, to facilitate
stream-processor programming. This work has gener-
ally been limited to computing small-scale problems
locally on a single-stream processor. An exception is a
limited set of experiments involving an MPI-supported
cluster of GPUs that directly applies stream computing to
the distributed programming model.2 However, this type
of distributed programming model is neither simple to
implement nor efficient when applied to the multiple spe-
cialized processors available on a network of computers.

A proposed new flow model considers the more
important aspects of distributed computing—including
process migration, data transfer, compatibility, hetero-
geneity, and security—as well as the main characteris-
tics of stream-based computing. This model makes it
possible to easily share programs among computers con-
nected to a network as well as executing them indepen-
dently of their physical locations, with data flowing from
and into the network through memory. The model
assigns the same functionality to the network interface
and to the local memory.

Caravela (www.caravela-gpu.org) is a novel distrib-
uted environment for applying the flow model on GPUs.
Named after the speedy vessel commanded by Pedro
Álvares Cabral, the Portuguese explorer who discovered
Brazil in 1500, Caravela provides a unique toolset for
programming and managing I/O data in local and remote
machines. In Caravela, programmers can easily generate

Distributed computing implies sharing computation, data, and network resources around

the world.The Caravela environment applies a proposed flow model for stream computing

on graphics processing units that encapsulates a program to be executed in local or remote

computers and directly collects the data through the memory or the network.

Shinichi Yamagiwa and Leonel Sousa
INESC-ID/IST, Technical University of Lisbon

I n the past few years, researchers have applied dis-
tributed and parallel computing to the simultane-
ous use of multiple resources. The message passing
interface (MPI) usually supports distributed com-
puting, and parallel processing is based on threads

for concurrent programming on shared memory multi-
processors.

Modern computers, programming languages, and
operating systems support these concurrency models.
Universities and laboratories worldwide have built
Beowulf cluster computers using commercially avail-
able commodity components. Grid computing exploits
the anonymous use of idle, personally owned comput-
ing resources from around the world to create high-per-
formance distributed systems, much like drawing on
electric power from a wall outlet.

Although the CPU plays a core role in general-pur-
pose computers, specialized processors have become
increasingly important in these machines. Video
encoders and graphics processing units (GPUs) are typ-
ical examples of specialized processors for stream-based
computing, specifically for multimedia and graphics
applications. Stream-based programming gathers data
into a stream, operates on it, and then scatters it back to
memory. Stream computing can also be mapped onto
general-purpose CPUs by decoupling computation and
memory accesses, boosting memory reads before the
computation, and postponing writes of the live data to
memory after the computation.1

Caravela: A Novel
Stream-Based Distributed
Computing Environment

and share flow-model units, each corresponding to an
implementation of the model for different applications,
that any system can execute locally or remotely. The envi-
ronment requires only the processing resources needed to
execute the flow-model unit and can be used for general-
purpose computation, including numeric computing
operations, physical simulations, and data mining.

To illustrate the proposed model and toolset, we use
as an example an MPEG-2 video stream that can be sent
together with its decoder program to a remote com-
puter’s GPU, which executes the decoder to display the
frames directly on the screen. The flow model also can
be used to distribute processing on large-scale compu-
tations. Toward that end, we use Caravela’s tools to con-
figure the specialized processors on different machines
as a pipeline supported on local area networks (LANs)
and wide area networks (WANs).

FLOW MODEL
A data stream is a sequence of data items �0, �1, . . . ,

�n such that, on each pass through the stream, a pro-
cessing unit reads the items once in an increasing order
of their indices. Stream computing corresponds to apply-
ing a kernel (�) comprising several operations in sequence
(usually several hundreds of them) to the single input
data stream � to produce a single output data stream
� = �(�). In general, stream computing can be applied
to a set of input streams to produce a single output
stream � = �(i)(� (i)) or even to compute in parallel a set
of output streams �(i) = �(i)(� (i)). This simple model does
not support recursive computation because it prohibits
interchanging the role of input and output streams.

The proposed flow model is generic in that it can be
used for any type of stream computing. Input data items
can result from previous computation (recursive com-
putation), and the model can compute several output
streams by applying a set of kernels in parallel to mul-
tiple input data streams.

Figure 1 shows the flow model’s conceptual structure,
which consists of several data I/O
streams, input constant values, and a
kernel based on a predefined instruction
set. Input constant values are useful for
parameterizing kernel processing. The
flow model also supports recursive com-
putation by introducing the memory
effect—having the kernel store a few
results used to generate an additional
input data stream or outside the kernel.

Flow-model-based computation can
map I/O streams into memory or even
directly into network interfaces. The
kernel only reads the input data stream
and provides output data—the only
computing resources it touches are the
I/O streams and the constant values.

This is an important property of the proposed model,
as it intrinsically protects machines that locally or
remotely perform flow-model-based execution.

The simple kernel calculation in Figure 2 illustrates the
potential and merits of flow-model-based programming.
The kernel corresponds to a finite impulse response (FIR)
filter with four taps, where h0 through h3 are the constant
coefficients and xn through xn–3 represent the input sam-
ples, corresponding to Input0 to Input3 in the model,
and y denotes the output filtered stream. The kernel com-
putation involves multiplying four samples by the cor-
responding h values and accumulating the result in
tmp_x. The tmp_x output corresponds to the y stream
generated by the multiplication and addition.

The example in Figure 2 assumes a small number of
filter taps. However, to accommodate an infinite num-
ber of h values in the impulsive response, the flow model
should have other shapes. It can have one or more input

May 2007 71

Output0

Output1

Output2

Input4

Input5

Input6

Kernel

Constant values

Output data stream(s)

OpInput3 Constant0

Processor Memory
effect

Input data stream(s)

Figure 1. Flow model conceptual organization.The model’s

structure consists of several data I/O streams, input constant

values, and a kernel based on a predefined instruction set.

tmp_x = Input0 * h0;
tmp_x = Input1 * h1 + tmp_x;
tmp_x = Input2 * h2 + tmp_x;
tmp_x = Input3 * h3 + tmp_x;

Ouput = tmp_x;

Kernel for FIR filter

y

xn
xn – 1

xn – 2 xn – 3 h0 h1 h2 h3
Kernel

∑hixn – i yn =
i = 0

3

Figure 2. Example of flow-model-based computation.The kernel corresponds to a

finite impulse response (FIR) filter with four taps, where h0 through h3 are the con-

stant coefficients and xn through xn–3 represent the input samples, corresponding

to Input0 to Input3 in the model, and y denotes the output filtered stream.

72 Computer

The General-Purpose Computation Using Graphics
Hardware Web site (www.gpgpu.org) discloses infor-
mation about types of software particularly specialized
for molecular dynamics calculation on the GPU
(http://folding.stanford.edu) and tools that simplify GPU
programming for general-purpose uses, such as Brook
for GPUs and the Sh language.

In most cases, GPUs are implemented in two pro-
grammable cores: vertex and pixel processors. Small
programs developed for these processors are usually
known as shaders.

As Figure 3 shows, when using a vertex processor to
remap the coordinates of each modeled 3D object,
designers have no access to data directly transferred to
the rasterizer, preventing use of the vertex processor for
general-purpose computing. With data generated from
a rasterizer, a pixel processor creates the pixel color data
streams for each point on the screen by performing tex-
ture mapping with textures for the 3D objects. The
processor concurrently computes the pixel color com-
ponents—A(lpha element), R(ed), G(reen), and B(lue)—
and sends them to the screen. Texture inputs and color
data constitute I/O streams directly accessible from the
GPU’s external memory.

The flow-model concept fits perfectly with the pixel
processor’s characteristics. The multiple floating-point
pipelined units embedded in a pixel processor, typically
four or more, provide both the SIMD capabilities and
the GPU’s vector-processing functionalities. They can
process four input streams in parallel to produce paral-
lel output streams. A pixel processor can be pro-
grammed in a low-level assembly language such as
Direct3D, the High-Level Shader Language (HLSL)
from Microsoft (www.microsoft.com/directx), or the
OpenGL Shading Language (GLSL; www.opengl.org).

data streams to implement feedback by generating an
input data stream from a delayed output data stream y.
In this case, a flow-model unit can be viewed simply as
a temporal iteration of the flow model using external
memory. Thus, it easily accommodates recursive com-
putation. Although implementation of recursive flow-
model units depends on the availability of the memory
effect, it need only access input and output data streams
without having to touch any other resources except the
kernel hardware.

APPLYING THE FLOW MODEL TO GPUS
In modern computers, GPUs are the main processing

resources along with the CPUs. These GPUs are imple-
mented as programmable units equipped with very high-
bandwidth memory and integer/floating-point hardware
units to operate on data streams, each consisting of an
ordered sequence of primitives attributed to graphics
applications. GPU performance for graphics applications
has accelerated faster than Moore’s law as it applies to
CPUs, on average more than double per year. For exam-
ple, the Nvidia GeForce 6800 Ultra GPU has a peak per-
formance of 40 Gflops and a memory bandwidth of 35.2
Gbytes per second, compared with 6.8 Gflops and 6
Gbytes per second for a 3-GHz Pentium 4 CPU.

In the past few years, the development of new algo-
rithms has enabled nongraphics applications to use GPU
processing power. These GPU-based algorithms exploit
the GPU’s single-instruction, multiple-data (SIMD) capa-
bilities along with its vector-processing functionalities to
efficiently perform computations. GPU-based algorithms
have been developed for several applications, such as
database queries and data mining, numerical and scien-
tific computation, sorting, motion estimation and plan-
ning, bioinformatics, and simulation of fluid flows.3

Figure 3. Processing pipeline for GPU graphics. With data generated from a rasterizer, a pixel processor creates the pixel color data

streams for each point on the screen by performing texture mapping with textures for the 3D objects.The processor concurrently

computes the pixel color components and sends them to the screen.Texture inputs and color data constitute I/O streams directly

accessible from the GPU’s external memory.

Rasterizer
(Interoperation of vertices)

Display to screen

Pixel processor
(coloring to objects

with textures)

Textures for objects

Vertex processor
(mapping vertices

global virtual world)

These languages assist in constructing a uniform pro-
gramming environment and let Caravela take advantage
of the hardware—for example by applying the blend-
ing-based conditional assignments to overcome the poor
performance of branching instructions in the current
programmable GPU pipeline.

CARAVELA
The Caravela environment consists of three main com-

ponents. The library provides all the functions required
to develop and execute an application based on the flow
model in the Caravela environment. It is provided as a
mass of C-based interface functions that find available
sites as well as each implement the
distributed flow-model management
and a remote executor.

The distributed flow-model man-
ager lets all the computers in the
Caravela environment share a flow-
model unit at any site. This manager
provides the functionality to describe
an atomic and independent flow-
model unit in a file and also restores it from a file. The
restoring function is embedded in the Caravela library.

The flow-model executor is a server placed in a con-
tributing machine somewhere in the world to accept exe-
cution requests of flow models from applications and to
distribute and execute a flow-model unit in a distributed
environment. The library includes functions to send
requests to a server and to execute a flow-model unit.

A library implementation for GPUs
The Caravela environment supported on GPUs

assumes that single or multiple pixel processors are con-
nected to the host machine. Caravela defines three dif-
ferent layers to specify a processing unit: The machine
is a computer with CPU(s), memory, and hard disk(s);
the video adapter is connected to this machine; and the
shader is a pixel processor embedded in an adapter.

Although a conventional video adapter actually
includes only a pixel processor, Caravela already sup-
ports multiple pixel processors, which is expected to be
the architecture of next-generation GPUs. The environ-
ment uses a set of library functions in sequence to map
flow models to shaders. These Caravela functions allow
introduction of a machine in the environment, identifi-
cation of a shader, generation of a flow-model unit, and
mapping and firing execution of this flow-model unit
in a shader.

Thus, a machine must be explicitly introduced in the
Caravela environment that automatically identifies the
available processors. This operation is fundamental to
set up the environment, but it is independent of the gen-
eration of flow-model units that run on any GPU’s pixel
processor. The machine can be either local or remote. In
particular, local introduction means that the flow-model

units are mapped and executed on that specific machine.
Remote machines are placed in remote computers con-
nected by the network and located anywhere around the
world. After introduction of a machine, the Caravela
library provides the function to find pixel processors
(shaders) available in the machine.

A flow-model unit can be generated either directly
through a function the library provides or by restoring
it from a file written in XML. The former calls the func-
tion with arguments to dynamically create a flow-model
unit directly in an application program. The main dis-
advantage of this approach is that the flow-model unit
cannot be shared with other application programs and

machines because only an applica-
tion program and its machine main-
tain the original code that generates
the flow-model unit. If the flow-
model unit is restored from an XML
file, the unit can be shared among all
application programs and machines.
The XML file corresponding to a
flow-model unit includes the num-

ber of input streams, the number of output streams, the
amount of data in I/O streams, constant values, and a
program.

The Caravela library’s shader-mapping function maps
a flow-model unit to a pixel processor, which is required
before firing its execution. The mapping function com-
pares the flow-model unit’s conditions with the corre-
sponding processor’s characteristics in terms of the
maximum number of I/O streams, maximum data size,
and supported data types. If they match, the mapping
function returns a fuse, the data structure necessary to
trigger the flow-model unit execution. As soon as the fuse
is passed to the fire function, this unit starts to execute.

Caravela’s current version supports the Windows
environment with DirectX9. Developers currently can
write a program in the DirectX assembly language or
HLSL; the next version of Caravela will also support
OpenGL and GLSL. When an application maps a flow
model to a processor, the mapping function automati-
cally compiles the corresponding program. The pro-
gram must specify a version of a target pixel processor.
Version mismatch incompatibility can cause a compi-
lation error. In a failure, the mapping function returns
an error code.

Distributed flow-model management
Caravela’s applications can share flow-model units

placed anywhere through XML files. As Figure 4 shows,
FlowModelCreator provides a GUI for interactively gen-
erating a flow-model unit. The application packs all of a
flow-model unit’s information in an XML file. The XML
file is readable from the Caravela function that restores
the flow-model unit from a file. When a URL is passed
to the function as the file name, the function contacts the

May 2007 73

Caravela’s applications

can share flow-model

units placed anywhere

through XML files.

74 Computer

URL through HTTP and restores the flow-model unit
from the configuration described in the XML file.

With this mechanism, application designers can use
all flow-model units already developed and located in
any machines integrated in the Caravela environment.
The most commonly used stream-based algorithms
include signal processing, video processing, and data
compression. They identify the URL where the XML
file with the corresponding flow-model unit can be
found. This mechanism eases the implementation of a
service to find necessary flow-model units accessible via
HTTP by typing keywords used on a flow-model unit’s
database. Occasionally, this database can return to the
same application different flow-model units that satisfy
various user requirements such as data accuracy and
processing time. With the flow-model database, users
can look for a suitable flow-model unit with a uniform
interface through a URL.

Remote flow-model unit execution
Remote machines are categorized in two types. A

worker machine is a remote device that provides its
resources to a given application and fires the corre-
sponding flow-model units to execute the kernels. A bro-
ker machine is a remote device that is responsible for
routing an application to the appropriate worker
machine.

Figure 5 shows the relation between worker and bro-
ker machines. While the worker machines constitute a
virtual tree connection, the broker machine operates as a
node at an intermediate level of the tree. A broker

machine directly connected to a
worker machine is a parent bro-
ker of the worker machine. A
worker and its parent broker can
specify a different parent broker.
By tracing these parent brokers
from an application, a request
client will reach its destination
worker machine.

In Figure 5, Broker0 has the
routing information for Broker1
and Broker2. Broker1 has two
workers, Worker0 and Worker1.
Here, Broker2 is a gateway
machine. Worker2 and Worker3
are connected to Broker2. There-
fore, Broker2 provides mecha-
nisms to go over the firewall. In
this example, Broker0 can collect
all the information for Worker0,
1, 2, and 3 in its routing tables and
thus make available those work-
ers’ GPUs.

Worker, broker, and applica-
tion machines exchange requests

or replies using the Simple Object Access Protocol via
Web services provided by each machine in the Caravela
environment. While an application machine always
works as a Web services client, worker and broker
machines operate not only as servers but also as clients,
because they must forward requests to their parent bro-
kers. The Web services accept a request, serve on it, and
return a reply. When an application machine must send
a request to a worker or broker machine, it only needs
to write an XML file as the request to the server machines
and to return a request ID to the application. The corre-
sponding reply simply returns XML file content associ-
ated with the request ID.

When a worker or broker machine receives a request,
Caravela activates the CaravelaSnoopServer program.
The server snoops the request directory, processes new
requests, and writes corresponding reply messages into
the reply directory. In the server setting, a Web service’s
URL specifies the parent broker and local service.
CaravelaSnoopServer reads the URL from the “loca-
tion” attribute of each Web service’s WSDL file, so pro-
cessing resource contributors need only insert their
WSDL file in a given URL. Thereafter, other worker or
broker machines can access their desired services’ URLs
as their parent broker’s places or as their local places.

The request/reply mechanism propagates requests
through a firewall to its LAN if one of the parent brokers
is placed between the WAN and a LAN. Indeed, Caravela’s
application can use all contributed computing resources
without considering TCP port restrictions. Moreover, the
access privilege of the Web services of worker and broker

Figure 4. FlowModelCreator application.This screen shot shows the GUI for generating

a flow model with four input data streams, five output data streams, and three constant

values.

machines belongs to the
settings of their HTTP servers.
Contributors thus can con-
trol external accesses before
CaravelaSnoopServer proces-
ses requests. This mechanism
provides flexibility for security
settings. If desired, the con-
tributors can accept any anony-
mous requests from around
the world.

EXAMPLE FLOW-MODEL
EXECUTION

The Caravela library func-
tions support all the required
steps for executing a flow-
model unit based on the flow
model in Figure 2. Figure 6a
shows one possible sequence
of steps using a local machine,
worker machine, and worker
via a broker machine.

In the first step, the Create-
Machine function creates a
machine that can be a local
machine, a worker machine, or a worker machine via a
broker. For remote worker creation, Caravela passes a
URL specified in the Web services to the function. When
an application requests a remote worker machine via a
broker, the worker machine information must be returned
to the caller via the broker. Caravela thus calls the
GetRemoteMachines function to acquire remote worker
machines belonging to the broker. Because this mecha-
nism lets the broker machine provide all the worker
machines’ URLs, the programmer does not need to know
those URLs a priori.

The next step in Figure 6a is creation of a flow-model
unit, which can be done from scratch or by restoring
one from an XML file. The first method creates a flow
model using the CreateFlowModel function in memory,
sets constant values for the model using the
SetConstantsToFlowModel function, and stores the cor-
responding shader program code in the model. The sec-
ond method simply uses the CreateFlowModelFromFile
function to read the URL pointing to the flow model’s
XML file described in FLOWMODEL_FILE.

The program shown in Figure 6b is written in assem-
bly language according to ShaderModel 2.0 of DirectX.
This shader assembly language assigns constants h0

through h3 to the corresponding constant registers c0
through c3. Expecting the input data streams to be pro-
vided as textures, the code uses the texld instruction to
load them into r0 through r3. Because each input stream
sample includes four data elements, register r4 (tmp_x in
Figure 2b) accumulates four results in parallel due to the

GPU architecture’s characteristics. The register oC0 is the
program’s—and thus the flow model’s—output stream.

After creating the flow model, the program tries to
find processors available in the worker machine by call-
ing the QueryShader function. The program maps
the flow-model unit to a processor through the
MapFlowModelIntoShader function. The GetInputData
function then gets memory regions for input streams and
initializes the input values.

Finally, the FireFlowModel function executes the flow
model. After the execution, the GetOutputData returns
the output data stream y. During an execution, the
Caravela library has a single interface for executing a
flow model—independently of being executed locally,
directly on a remote worker, or on a remote worker via
a broker. Moreover, a flow model can be created sepa-
rately from its execution steps in the code. Flow-model
units can be shared via network by specifying XML files
through HTTP. Thus, the Caravela environment
accesses all the GPU resources and lets designers share
all the GPU algorithms distributed globally.

The Caravela package includes sample kernels for 1D
and 2D FIR filtering. The Caravela team is program-
ming several other applications and will be deploying
the corresponding flow-model units at its Web site. For
example, it takes about 10.5 seconds to process an appli-
cation program of a 3 � 3 FIR filter to an image with
1,024 � 1,024 pixels and 100 iterations in an Nvidia
GeForce 7300GS graphics card, connected to the PC
through a PCI Express bus.

May 2007 75

Figure 5. Communication in the Caravela environment. Workers belong to their parent broker,

and each broker can have its parent broker.

Machines in the Internet

Firewall

Broker0

Broker1

Broker2

Application client

Machines in a LAN

Parent

Parent Parent

Parent

Parent

Parent

Worker0 Worker1

Worker2 Worker3

When the application
uses workers, it sends
shader information directly
to workers.

When the application uses
Broker0, it asks for worker
information .

76 Computer

Data transfer between the host memory and the video
memory (VRAM) is currently one of the bottlenecks of
GPU-based applications because data transfer occupies
approximately 70 percent of the total execution time.
This is also an issue to be considered in recursive com-
puting, as such applications may have to use the host
memory to place output data into the GPU’s input.4 In the
host machine, an AMD Opteron running at 2 GHz and
with 2 Gbytes of RAM, the execution time is approxi-
mately 23.5 seconds, 2.2 times slower than in a GPU.

A lthough Caravela currently supports remote exe-
cution based on individual flow models, we
are extending the environment to implement

distributed computing based on meta-pipelining.

Caravela will organize multiple processors on differ-
ent machines in a pipeline over a network, where all
participating flow-model units will run in a pipeline
fashion. In this meta-pipelining, each flow-model unit
resides in a different virtual pipeline stage and passes
data streams from one stage to the next stage as it
processes the data.

We anticipate some interesting applications for
pipeline-model-based processing. For example, Caravela
can process video encoding by assigning a flow-model
unit to each step of the video encoding scheme and hav-
ing those flow-model units process the sequence of input
frames in a pipeline manner. The Caravela environment
makes it possible to create and manage a virtual com-
putational meta-pipeline for such applications formed
by workers around the world. ■

Figure 6. Flow-model execution. (a) Program flow using the Caravela library; (b) a shader stored in the FIR filter’s flow-model unit.

(a) (b)

ps_2_0

dcl_2d s0
dcl_2d s1
dcl_2d s2
dcl_2d s3

dcl t0.xy
dcl t1.xy
dcl t2.xy
dcl t3.xy

texld r0, t0, s0
texld r1, t1, s1
texld r2, t2, s2
texld r3, t3, s3

mul r4, r0,c0
mad r4, r1, c1, r4
mad r4, r2, c2, r4
mad r4, r3, c3, r4

mov oC0, r4

Step 6: Getting the result

Step 5: Execution of flow model

Step 4: Initialization of input

Step 3: Mapping to shader

Step 2: Flow-model creation

Step 1: Machine creation

(1) Local machine execution
CARAVELA_CreateMachine(
LOCAL_MACHINE,
NULL,
&machine);

(2) Remote Worker execution
CARAVELA_CreateMachine(
 REMOTE_MACHINE,
 REMOTE_MACHINE_URL,
 &machine);

(3) Remote Worker execution via Broker
CARAVELA_CreateMachine(
 REMOTE_BROKER,
 BROKER_MACHINE_URL,
 &machine);
CARAVELA_GetRemoteMachines(
 machine,
 &num_machines,
 &worker_machines);

(4) Flow-model creation
CARAVELA_CreateFlowModel(
 RUNTIME_DIRECTX9,
 &flowmodel,1,DATA_TYPE_FLOAT4,NUM_DATA,2,1);
CARAVELA_SetConstantsToFlowModel(
 flowmodel, 1, &constant);
CARAVELA_SetShaderProgramToFlowModel(
 flowmodel,
 SHADERLANG_DIRECTX9_ASSEMBLY, 30,
 SOURCE_FROM_FILE, "IIR.asm", NULL);

(5) Restoring flow model
CARAVELA_CreateFlowModelFromFile(
 FLOWMODEL_FILE,
 NULL,
 &flowmodel,
 &flowmodel_err);

(6) Finding shader and mapping flow model
CARAVELA_QueryShader(
 machine, &flowmodel->ShaderCondition, &shader);
CARAVELA_MapFlowModelIntoShader(
 shader, flowmodel, &compile_err, &fuse);

(7) Initializing input stream
CARAVELA_GetInputData(flowmodel, 0, &input_matrix);

(8) Executing flow model
CARAVELA_FireFlowModel(fuse);

(9) Reading the result
CARAVELA_GetOutputData(flowmodel, 0, &output_matrix);

Acknowledgments

This work was partially supported by the Portuguese
Foundation for Science and Technology through the
FEDER program. We thank Munehiro Fukuda at the
University of Washington, Bothell, and the anonymous
referees for their helpful comments.

References

1. J. Gummaraju and M. Rosenblum, “Stream Programming on
General-Purpose Processors,” Proc. 38th Ann. IEEE/ACM
Int’l Symp. Microarchitecture, IEEE CS Press, 2005, pp. 343-
354.

2. Z. Fan et al., “GPU Cluster for High-Performance Comput-
ing,” Proc. 2004 ACM/IEEE Conf. Supercomputing, IEEE
CS Press, 2004, pp. 47-58.

3. J.D. Owens et al., “A Survey of General-Purpose Computation
on Graphics Hardware,” Eurographics 2005, State of the Art
Reports, Aug. 2005, pp. 21-51.

4. S. Yamagiwa, L. Sousa, and D. Antão, “Data Buffering Opti-
mization Methods Toward a Uniform Programming Interface
for GPU-Based Applications,” to appear in Proc. 2007 ACM
Int’l Conf. Computing Frontiers, ACM Press, 2007.

Shinichi Yamagiwa is a researcher at Instituto de Engen-
haria de Sistemas e Computadores Investigação e Desen-
volvimento (INESC-ID), Technical University of Lisbon.
His research interests include parallel and distributed com-
puting, especially using GPU resources, and network hard-
ware and software for cluster computers. Yamagiwa
received a PhD in engineering from the University of
Tsukuba, Japan. He is a member of the IEEE. Contact him
at yama@inesc-id.pt.

Leonel Sousa is an associate professor in the Department of
Electrical and Computer Engineering at Instituto Superior
Técnico and a researcher at INESC-ID, Technical Univer-
sity of Lisbon. His research interests include computer archi-
tectures, high-performance computing, embedded systems,
and multimedia signal processing. Sousa received a PhD in
electrical and computer engineering from the Technical Uni-
versity of Lisbon. He is a senior member of the IEEE and
a member of the ACM. Contact him at las@inesc-id.pt.

May 2007 77

Mid Atlantic (product/recruitment)
Dawn Becker
Phone: +1 732 772 0160
Fax: +1 732 772 0161
Email: db.ieeemedia@ieee.org

New England (product)
Jody Estabrook
Phone: +1 978 244 0192
Fax: +1 978 244 0103
Email: je.ieeemedia@ieee.org

New England (recruitment)
John Restchack
Phone: +1 212 419 7578
Fax: +1 212 419 7589
Email: j.restchack@ieee.org

Connecticut (product)
Stan Greenfield
Phone: +1 203 938 2418
Fax: +1 203 938 3211
Email: greenco@optonline.net

Midwest (product)
Dave Jones
Phone: +1 708 442 5633
Fax: +1 708 442 7620
Email: dj.ieeemedia@ieee.org

Will Hamilton
Phone: +1 269 381 2156
Fax: +1 269 381 2556
Email: wh.ieeemedia@ieee.org

Joe DiNardo
Phone: +1 440 248 2456
Fax: +1 440 248 2594
Email: jd.ieeemedia@ieee.org

Southeast (recruitment)
Thomas M. Flynn
Phone: +1 770 645 2944
Fax: +1 770 993 4423
Email: flynntom@mindspring.com

Midwest/Southwest (recruitment)
Darcy Giovingo
Phone: +1 847 498-4520
Fax: +1 847 498-5911
Email: dg.ieeemedia@ieee.org

Southwest (product)
Steve Loerch
Phone: +1 847 498 4520
Fax: +1 847 498 5911
Email: steve@didierandbroderick.com

Northwest (product)
Peter D. Scott
Phone: +1 415 421-7950
Fax: +1 415 398-4156
Email: peterd@pscottassoc.com

Southern CA (product)
Marshall Rubin
Phone: +1 818 888 2407
Fax: +1 818 888 4907
Email: mr.ieeemedia@ieee.org

Northwest/Southern CA (recruitment)
Tim Matteson
Phone: +1 310 836 4064
Fax: +1 310 836 4067
Email: tm.ieeemedia@ieee.org

Southeast (product)
Bill Holland
Phone: +1 770 435 6549
Fax: +1 770 435 0243
Email: hollandwfh@yahoo.com

Japan
Tim Matteson
Phone: +1 310 836 4064
Fax: +1 310 836 4067
Email: tm.ieeemedia@ieee.org

Europe (product/recruitment)
Hilary Turnbull
Phone: +44 1875 825700
Fax: +44 1875 825701
Email: impress@impressmedia.com

A D V E R T I S E R I N D E X M A Y 2 0 0 6

Compsac 2007 Cover 3
CSDP-Training 7
e-Science and Grid Computing Conference 2007 69
Fairfield University 79
IEEE Computer Society Awards 13
IEEE Computer Society Membership 82-84
IEEE Member Digital Library 81
IPDPS 2007 Cover 2
John Wiley & Sons, Inc. 5
Seapine Software, Inc. Cover 4
WorldSciNet 22
Classified Advertising 78-80

Advertising PersonnelAdvertiser Page Number

Marion Delaney
IEEE Media, Advertising Director
Phone: +1 415 863 4717
Email: md.ieeemedia@ieee.org

Marian Anderson
Advertising Coordinator
Phone: +1 714 821 8380
Fax: +1 714 821 4010
Email: manderson@computer.org

Sandy Brown
IEEE Computer Society,
Business Development Manager
Phone: +1 714 821 8380
Fax: +1 714 821 4010
Email: sb.ieeemedia@ieee.org

Advertising Sales Representatives

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError false
 /PDFXTrimBoxToMediaBoxOffset [
 72.00000
 72.00000
 72.00000
 72.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents suitable for reliable viewing and printing of business documents. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

