A Performance Model of MPI Collective Communications for Parallel Computing on Computational Clusters

Alexey Lastovetsky, Maureen O’Flynn, Vladimir Rychkov
UCD School of Computer Science and Informatics
Belfield, Dublin 4, Ireland
alexey.lastovetsky@ucd.ie
Motivation

- **UCD Heterogeneous Computing Laboratory**: Research and development in high performance heterogeneous computing
 - Algorithms: parallel and distributed
 - Programming tools: mpC, HeteroMPI, SmartGridSolve
- **Approach**: Model-based
 - The programming tools build, maintain and use for optimization the performance model of the executing heterogeneous platform
 - => Accuracy and efficiency of the model are critical
- **HeteroMPI**: An extension of MPI for high performance computing on heterogeneous clusters
 - Accurate and efficient performance model of heterogeneous processors
 - Communication model
 - Very basic
 - Cannot be used for optimization of communication operations
Background

• **Goal:** Analytical model for prediction of the execution time of MPI communication operations on heterogeneous clusters based on a switched network (the most common parallel platform)

• **Approach**
 – Start with a performance model of a *single point-to-point communication*
 – Use the model to construct models for collective communications
 – Results in linear models for collectives

• **Validation**
 – Works for *simultaneous independent point-to-point* communications
 – *One-to-many* (scatter-like) communications
 • Problem: A step-wise increase of the execution time for large messages
 – *Many-to-one* (gather-like) communication
 • Problem: Significant and non-deterministic escalations of the execution time of for medium-sized messages
Performance model for point-to-point communication

• Sending a message from processor i to processor j:

\[T_{ij} = C_i + t_i M + C_j + t_j M + M / \beta_{ij} \]

- \(T_{ij} \) - execution time
- \(M \) - message size
- \(C_i, C_j \) - fixed delays
- \(t_i, t_j \) - variable delays
- \(\beta_{ij} \) - transmission rate
Performance model for one-to-many communication

• One-to-many:

\[C_0 + t_0 \times n \times M + \max_{i=1}^{n} \left\{ C_i + t_i M + M / \beta_{0i} \right\}, M \leq S \]

\[C_0 + t_0 \times n \times M + \sum_{i=1}^{n} \left(C_i + t_i M + M / \beta_{0i} \right), M > S \]
Many-to-one collective communications: non-linear and non-deterministic escalations.
Many-to-one model for small messages

\[T = n(C_0 + t_0 M) + \max_{1 < i \leq n} \left\{ \frac{C_i + t_i M + M}{\beta_{io}} \right\} + \kappa_1 M \]
Parameters of many-to-one model for medium-sized messages

\[M_1 = M_1(n) \]
- escalations begin

\[M_2 = \text{const} \]
- escalations stop

\[M_C = M_C(n) \]
- escalations occur with 100% certainty

\[P_i = P_i(n, M) \]
- probability of escalation to \(T_i \) \((i=1,2,3)\)
Probability of escalation

- A small number of discrete constant *levels* of escalation (10s and even 100s fold slowdown)
- *Probabilities of escalation* to each level
Many-to-one model for large messages

\[T = C_0 + t_0 M + \sum_{i=1}^{n} \left(C_i + t_i M + M / \beta_{0i} \right) + \kappa_2 + \kappa_3 M \]
Application: Multi-spectral satellite imaging

- A typical real-time satellite imaging application (512x512 bytes)
- A sequence of raw data images divided into *partitions* for parallel processing by a cluster
Application: Multi-spectral satellite imaging (ctd)

- Calculate the number of sub-partitions m of a partition of the medium size M so that: $\frac{M}{m} \leq M_1, \frac{M}{m-1} > M_1$

- Replace a single `MPI_Gather` with a sequence of m `MPI_Gather` for smaller messages
Application: Optimization of collective communications

• Idea
 – Use the models for high level optimization of MPI collective communications
 – Implemented in HeteroMPI
 • Parameters of the models are found upon installation of HeteroMPI
• HMPI_Gather
 – Avoids escalations in the execution time for MPI_Gather
 – Revoke MPI_Gather for small and large messages
 – Implement by a sequence of calls to MPI_Gather (separated by barriers), each gathering small sub-messages ($<M_1$), for medium messages ($M_1 \leq M \leq M_2$)
• **HMPI Scatter**
 – Avoids the leap in the execution time for **MPI Scatter**
 – Revoke **MPI Scatter** for small and medium messages
 – Implement by an equivalent sequence of calls to **MPI Scatter**, each scattering sub-messages of the size less than S
Optimization of collective communications (ctd)

- Performance of native **MPI_Gather** and **HMPI_Gather**
 - LAM MPI 7.1.3 on a 16-node heterogeneous GigabitEthernet-based cluster
Optimization of collective communications (ctd)

- Performance of native `MPI_Scatter` and `HMPI_Scatter`
 - LAM MPI 7.1.3 on a 16-node heterogeneous GigabitEthernet-based cluster
Conclusion

• Results
 – Previously undocumented non-linear and non-deterministic behaviour of gather–like MPI communications for medium messages is reported and analysed
 – Many-to-one model is built on the empirical data and point-to-point model
 – Application of the model to optimization of MPI collective communications => to better performance of MPI-based applications on heterogeneous clusters

The work was supported by Science Foundation Ireland.