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" A
Introduction

® The solution of a S.E.M. in high performance
parallel systems is studied.

® The methods analyzed here are ILS and 2SLS.

® Parallel algorithms for distributed memory have
been developed.

® The methods have been analyzed in different
parallel systems.



Simultaneous Equations Models

The scheme of a system with M equations, M
endogenous variables and k predetermined variables is
(structural form)

Ylt = 1312Y2t +:BI3Y3t +°°°+:81MYMt T y11X1t Tt ylkat +u1t
th = 1821Y1t +:823Y3t +“'+182MYMt t y21X1t t...t y2kat +u2t

Y, = IBMIYIt +IBM2Y2t +18M3Y3t +-"+:BMM—1YM—U LD 270 ST D, G 8 T8

These equations can be represented in matrix form
BY +QGX, +u, =0



Simultaneous Equations Models

The structural form can be expressed in reduced
form

Y =PX +v

with P=-B'G and v =-Bu
Ylt =p11X1t +"’+p1kat +vlt

YMt =pM1X1t +”°+pMkat +VM1‘
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When ILS and 25LS?

Three kind of equations:

® Underidentified >> not solve

B QOveridentified >> 2SLS

B Just-identified >> ILS (also 2SLS)



OLS (Ordinary Least Squares)

OLS can be used to solve a regression model

In matrix form Yz =31X1t +'”+aant +uz

Y=bX +u
The expression of the estimator is

b=(XX)'XY



ILS (Indirect Least Squares)

® The technique ILS
needs the equation to
be exactly identified

B Structural coefficients
can be univocally
obtained from the
reduced form to solve
an equation

-BIN =T,
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2SLS (Two Step Least Squares)

® OLS can not be used in ® The proxy of Y is

structural form because calculated using OLS with
random variable and Y and the exogenous in
endogenous variables are the system.
correlated = \When the endogenous

® Endogenous variables have been replaced, OLS
are replaced for IS used again in the
approximations (proxys equation

variables)
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Parallel Algorithm for distributed
memory

Try to parallelize at the uppest level

ILS and 25LS must share information.

Each call to 25LS must share more information
to reduce the number of operations.

Perform the maximum number of operations
between all the processors at the beginning of
the algorithm to be used for any processor in
the other parts of the algorithm.

ScaLAPACK and PBLAS libraries are used to
make a portable program
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OLS, (Parallel OLS)

Compute X'X {Parallel Multiplications}
Compute XY {Parallel Multiplications}
Compute (X'X)~HX'Y") {Parallel Inverse}
if estimation=true then
Compute X (X' X)71(X"Y) {Parallel Multiplications}
6: end if

[ S U N R

In the experiments pcyemm has been used to perform the
multiplications, and pdgesv to compute the inverse. The
use of ScaLAPACK allows us to obtain

a portable routine.
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ILS for a system (Parallel ILS)

ILS in different equations

can shared the Pi matrix 1
Pi is calculated at the >
beginning of the algorithm j
and is used for all the .
processors i
Each processor needsto 7
access Pi, and the 8:

system’s structure, but it ¥
): END PARALLEL

[I" = OLS,(Y, X, estimation = false)
Distribute II to all the processors
IN PARALLEL Each processor g DO
for jzl...%— do

i=q+(—1)p

if equation 7 1s exactly identified then

Solve —B;Il =17

end if

end for

does not need the sample
data.
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2SLS for a system (Parallel 2SLS)

® Three different versions of the 2SLS
algorithm are presented.

B The firstis a basic algorithm which
will be improved in the second and
the third versions.

B |n the first version, the structure of
the parallel 2SLS algorithm is stated.
In the others versions, the same
structure is followed but matrix
decompositions are used to obtain
lower costs.
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The first version of 2SLS

B All the proxys are
calculated at the .

beginning of the Y = OLS(Y, X, estimation =true)

1
algorithm 2: Distribute ¥ to all the processors
® All the proxys are 3: IN PARALLEL Each processor ¢ DO
distributed in all the  4: for jzl...% do
processors 5. i=q+(j—1p
" Each processor 6:  OLS(y;, X, estimation=false)
solves an equation 7. end for
using OLS 8: END PARALLEL

sequentially
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The 2nd v. of 2SLS (inverse decomposition)

Solve an equation where the proxy variables have been
substituted before (they are calculated at the beginning)

y,=a,+a,y, +..+a,y, +gx, +..+gx, +e

The set of endogenous variables of the equation is Y, and
X, is the set of predetermined, and then the variables of

the equation are the matrix [ 1 X]
And (X1 X ) [ 11 X)) Yix ]y, must be solved

15



The 2nd v. of 2SLS (inverse decomposition)

-1

Theinverse: %' ., _ X'X X% _
A R A

(X,'X)"' 0 s -(X,'X) ' X,Y,

>

XYY X (X, X)X ) Y X (X X))

0 0 1d
Using
A B A -A'B
= 0 + (D- B'A"'B)'(- A'B, Id)
B' D 0 O Id
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The 2nd v. of 2SLS (inverse decomposition)

(X,'X)) is taken from X'X

(X, ’)S ) is calculated (cost 2/3k° )

X, 4 _ istaken from X’ Y

())/( X)X, Y is calculated (cost 2k2m)
%(X X)X, g s calcuylat?j (cost 2mek)

A A is taken froma
Yl Y, Y
1 1 J J .
( - X1 (X1 X1)'7 X1 }'7 is calculated (cost 2/3m? )

17
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The 2nd v. of 2SLS (inverse decomposition)

To calculate [X, Y]y

m X"y, can be taken from X\Y which was
calculated to obtain Pi

= (h 'y, ) can be taken from Y'Y

18
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The 2nd v. of 2SLS (inverse decomposition)

Finally, the algorithm is

Y = OLS,(Y, X, estimation =true) {saving I, X’X and X'V}
Y'Y {parallel multiplications}
Distribute IT, X*X, X'V, Y, Y'Y to all the processors
IN PARALLEL Each processor ¢ DO
for jzl...% do
i=q+(—1)p o
OLSoper(:,Y X X' X XY, YY)
end for
END PARALLEL

=1 =

19



The 3rd v. of 2SLS (QR decomposition)

X is decomposed as QR using Householder
method, where Q is orthogonal and R upper
triangular.

_ R
X =QR = ((1]Q) ( , ) = (W Iy

I=(X'X)7XY = (RIQIQi1R1) "' RiQ1Y = (RiR) ' RIQ\Y1 = Ry QY

Id

Y = XIl = QRR{1QY = Q (
0

) Q?—fr — Q1Q?—’r

20



The 3rd v. of 2SLS (QR decomposition)

OLSs,., {y@- ,}fe-?e:st.imat.ion:falsc)

1: Obtain @ and Ry {cost — 3K*(3d — K)}
2: Compute Ry’ {cost — %Ka}
3: coef = Ry Qly; {cost — 2K (K +d)}

The algorithm is

: Obtain @, and Ry, {QR decomposition of X in parallel}
Compute Ry* {parallel inverse}
I = R{7'Q,Y { parallel multiplic-.ation&:}
Y = Q,0Q1Y {parallel multiplications}
Distribute Y to all the processors
IN PARALLEL Each processor ¢ DO
for jzl...‘%'— do

i=q+(—1p

O LS4, (1;,X, estimation=false)
- end for
: END PARALLEL

nhwwl—t

=] o

o oo

[R R —
==
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Technique version cost
ILS Trps,(N,d,K) =Tors,(N.d, K,dest = 0) + Ta24(KN,p)+
N
£ (2K — k)P +2(K — k)2 +2Nk) = (K — ky)*
i=1
25LS First T5505, 14, (N d, K) =Tops, (N,d, K, dest = 1) + Ta24(dN, p)+
N
P
+ Z (TDLS(].,.d, ki 4+ mny — 1, dpat = [})‘]
i=1
~ %(%(A 41y — 1)% 4+ 2(k; + ny — 1)2d)
28LS Second 12515y peer (N d. K) = Tops,(N.d, K 6 = 1) + 22044
(inverse decomp. ) +Taoa(K?2+ N2+ 2KN + dN.p)+
N
i (3(k3 4+ nd) + 2(ni + k)% + 602k; + 2k2n;)
i=1
= %(%(k‘?’ +nd) + 6n2k; + 2kIn;)
25LS Third T551.5, 30 (N.d, K () =& ap —I—TQR (d, K')+ T a0a(dN,p)+
N
(QR decomp.) " (Tor s (ki + 11— 1, 850 = 0)
i=1
%{ (ki +n; —1)%d — (ki +n; — 1)%)
Table 1

Summary of theoretical costs of algorithms ILS and different versions of 25LS

a4
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Computer System

® Kefren: A cluster of 20 biprocessors Pentium Xeon 2
Ghz interconnected by a SCI net with a Bull 2D topology
in a mesh of 4 £ 5. Each node has 1 Gigabyte RAM.

®  Marenostrum: A supercomputer based on PowerPC
processors, BladeCenter architecture, a Linux system
and a Myrinet interconnection. The main characteristics
are: 10240 IBM Power PC 970MP processors at 2.3
GHz (2560 JS21 blades), 20 TB of main memory, 280 +
90 TB of disk storage and a peak Performance of 94,21
Teraflops. Marenostrum is the most powerful
supercomputer in Europe and the fifth in the world,
according to the last TOP500 list.

23



ILS

N: 500 1000 1500 2000 2500
d: 500 K00 1000 1000 1500
proc. || time Sp || time Sp time Sp time Sp time Sp
1 6,43 68,37 346,06 1263,33 2455.03
4 1,73 | 3,72 || 18,52 | 3,69 || 87,18 | 397 | 310,81 | 4,06 || 550,55 | 446
8 1.01 | 6.37 956 | T.15 44 52 | 70T 156,62 | 8,07 287.36 | 8,564
16 0,63 | 10,22 || 5,25 | 13,02 || 24,53 | 14,11 74,63 | 16,93 147,30 | 16,67
32 0,45 | 14,44 || 4.78 | 14,29 12,62 | 27,42 38,99 | 32,40 T7.82 | 31,55
64 0,33 | 19,27 1.90 | 35,96 7,70 | 44,92 21,40 | 59.03 40,39 | 60.79

Table 3

Execution time (in seconds) and speed-up of ILS algorithm in Marenostrum, when
varying the number of endogenous variables (IN'), the sample size (d) and the number
of processors
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ILS

d: 500 1000 1500 2000
time | % time | % time | %% time | %
total time || 220,63 230,44 228,54 231,26
I 096|042 || 142|062 195|085 248|107
Table 4

Execution time (in seconds) of ILS algorithm in Kefren, with N =1000, K =400, and

varying the sample size (d). in one processor
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The first version of 2SLS

N: 5 1000 1500 2000 2500
d: 5 500 1000 1000 1500
proc. time time Sp time time Sp time
1 148,59 160448 13762.89 45046,84 248294 57
4 39.92 400,74 | 3,92 3524,29 11813,29 | 3,81 63018,56
8 21,42 212,62 | 7,55 1891.09 6001,29 | 7.51 33575,22
16 15,86 138,49 | 11,59 026,25 | 14.86 || 3062,14 | 14.71 16466,12
32 8,16 72,18 | 22,23 493,78 | 27.87 155713 | 28,93 8476.88
Table 6
Execution time (in seconds) and speed-up of the first version of the 25LS algorithm

in Marenostrum, when varying the number of endogenous variables (N), the sample
size (d) and the number of processors




The first version of 2SLS

d: 500 1000 1500 2000
time | Y% time | % time | % time | %
total time || 790,26 1754,95 4356,69 11601.,32
Y 1.14 | 0.14 1,73 | 0,10 2,51 | 0,06 3.12 | 0,03
Table 7

Execution time (in seconds) of the first version of the 25LS algorithm in Kefren,

with N=1000, K =400 and varying the sample size (d). in one processor
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The 2nd v. of 2SLS (inverse decomposition)

N: 500 1000 1500 2000 2500
d: 500 1000 1000 1500
proc. || time Sp Sp time Sp time Sp time Sp
1 21,20 2014.73 7005,57 18471.71
4 6,26 | 3,39 3.85 | 52808 | 3,82 || 1820,22 | 3.85 | 493050 | 3,75
8 3,49 | 6,07 7,30 274,49 | 7,34 044,70 | 7.42 2036.07 | T.28
16 2,12 | 10,00 13,06 || 148,08 | 13,61 || 1425,33 | 4,92 134891 | 13,69
32 1,36 | 15,55 22,45 B3 77 | 24,05 273,565 | 25,61 677,84 | 27,25
64 1,12 | 18,96 33,94 48,42 | 41,61 150,91 | 46,42 393,16 | 46,98
Table 9

Execution time (in seconds) and speed-up of the second version of the 25LS algo-

rithm in Marenostrum, when varying the number of endogenous variables (N}, the
sample size (d) and the number of processors
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The 2nd v. of 2SLS (inverse decomposition)

d: 500 1000 1500 2000
time | % time | % time | % time | %
total time || 197,43 202,78 203,35 228,08
Y, Y'Y 2,05 | 1,04 || 340 | 1,68 || 499 | 245 | 6,29 | 2,76
Table 10

Execution time (in seconds) of the second version of the 2SLS algorithm in Kefren,
with N=1000, K =400 and varying the sample size (d) in one processor




The 3rd v. of 2SLS (QR decomposition)

d: 500 1000 1500 2000
time | % time | Y time | % time | %

total time nH4.64 1787.,86 224422 2750,85
QRRERVILY | 1338]002| 2130|001 | 4350]002]| 7560 0,03

Table 13

Execution time (in seconds) of the third version of the 25LS algorithm in Kefren,

with V=1000, K =400, and varving the sample size (d). in one processor
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Comparison between the three techniques

N: 500 1000 1500 2000 2500
d: 500 500 1000 1000 1500
proc. time | Sp time Sp time | Sp time | Sp time | Sp
Ist ver || 72,82 790,93 T031,96 19337,92 07874,21
2nd ver || 12,91 | 5,64 || 198,16 | 3,99 || 122533 | 5,74 4192,10 | 4,61 || 10217,02 | 9,58
3rd ver || 74,32 | 0,98 || 549,07 | 1,44 || 4643,24 | 1,51 0676.49 | 2.00 || 29830,90 | 3,28
Table 11

Execution time (in seconds) and speed-up of the second and third versions of the
2SLS algorithm with respect to the first version, with one processor in Kefren,
when varyving the number of endogenous variables (N ), the sample size (d), and the
number of processors
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Conclusions and Future works

® Sometimes a
Simultaneous ® Application to real
Equations Model problems
needs special
software and be
solved in High
Performance Systems

® Tools will be made
freely available to the
scientific community

® Develop an algorithm
to find the best model
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