

Practical Planar Metric Rectification

Alberto Ruiz, DIS aruiz@um.es

Pedro E. López-de-Teruel, DITEC pedroe@ditec.um.es

Lorenzo Fernández, DITEC lfmaimo@ditec.um.es

applications

- Visual robot navigation
- pose estimation
- shape recognition, etc.

problem

automatic metric rectification of a plane from *interimage* homographies

requirements

- Computationally efficient, for real time rectification
- robust to image noise

general solution

- find the *circular points* (4 d.o.f.)
- difficult nonlinear optimization problem

the solution C is a rotation which

obtains a frontoparallel view

it has **3** essential d.o.f.: f and $h = l'_{\infty}$

proposed solution

- assume *diag*(*f*,*f*,1) camera
- easier optimization to find just the *horizon* of the plane (2 d.o.f.)
- even if the f of all views are unknown!

cost function

the homography floor-image *C* induced by a camera matrix verifies:

$$C^{T}\omega C = \begin{vmatrix} v & 0 & x \\ 0 & v & x \\ x & x & x \end{vmatrix}$$

and ω can be deduced from C in a diag(f,f,1) camera

key idea

ppp

f can be computed from the horizon and a single right angle

optimization

we search for the horizon *h* which induces f_1 and $C(h, f_1)$ such that all $H_{k} C(h, f_1)$

> are consistent with camera homographies

variations of the algorithm

- all f_{k} known (easy and fast)
- f₁ known (easy and quite fast)
- constant *f* (not so easy)
- all $f_{_{\!\scriptscriptstyle L}}$ unknown (harder)

stability

example

image sequence

rectified plane

camera pose

 $h_{4,2}$ im₂

constant known f = 2.8

