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ABSTRACT

Many natural and artificial shapes can be compactly described by sequences of circular arcs and
straight line segments. This paper presents practical methods to compute the coefficients of the Fourier
series of a piecewise-circular curve and the moments of the enclosed region. These descriptors are the
basis of simple and widely used techniques for shape matching and alignment, that can now be effi-
ciently applied to a more expressive data representation.
Keywords: piecewise curve, circular arc, Fourier descriptors, shape moments.

c© 2018 Elsevier Ltd. All rights reserved.

1. Introduction

Shape matching and alignment are important problems in visual pattern recognition (Zhang and Lu, 2004). Simple approaches

involve Fourier descriptors (Zahn and Roskies, 1972; Persoon and Fu, 1977) and moments (Hu, 1962), which are useful to compute

invariant features and alignment transformations (Sprinzak and Werman, 1994). Fourier coefficients are usually obtained by the

FFT from regularly sampled contours, and moments are efficiently obtained from reduced polygonal approximations.

Many natural and artificial shapes can be accurately described by curves composed of linear and curved fragments (see Figs.

6 and 7). Depending on the amount of curvature and image resolution, the required number of fragments can be substantially less

than the size of the raw digitized contour or a reduced polygon. This paper presents a simple and efficient method to extract Fourier

and moment shape descriptors from this kind of compact curve model.

Smooth curves are usually modeled by expressive parametric families like Bezier curves or B-splines. However, for our present

purposes, essential requirements are arc-length parameterization and efficient geometric transformations, since the detected shapes

must often be normalized or aligned to templates. Of particular interest are the metric, affine, and projective transformation groups.

Elliptic, fragments would be ideal, as conics transform into conics. Unfortunately, a natural arc-length parameterization of the

ellipse is analytically unfeasible. As a practical alternative, in this paper we explore a representation based on circular arcs (Yang
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Fig. 1. Geometric description of an oriented circular arc.

and Du, 1996; Pei and Horng, 1996; Meek and Walton, 1992; Rosin and West, 1989; Tortorella et al., 2008; Kolesnikov, 2012;

Kolesnikov and Kauranne, 2014).

The paper is organized as follows: Section 2 describes the proposed curve representation. In sections 3 and 4 we derive simple

expressions for the Fourier coefficients and the shape moments. Section 5 analyzes the computational cost. Section 6 presents

several illustrative experiments, and the final section summarizes the conclusions and future directions of this work.

2. Curve representation

Let Z(t) ∈ C be a curve defined piecewise by means of n sections Zk(t) for t ∈ [tk, tk+1), k = 0 . . . n − 1. Each section is either a

proper circular arc with finite radius or a straight line segment.

Normalized arc-length is used as parameter so that the whole curve is traversed at constant speed for t ∈ [0, 1). This parame-

terization is invariant to metric transformations and changes of the piecewise decomposition. This is essential to obtain consistent

descriptors from different detected instances of the same object. (Affine invariance can also be achieved by a previous whitening

transformation.)

2.1. Arcs

An oriented circular arc can be specified in many ways, using different subsets of geometric elements (Fig. 1). For example,

we can use an ordered triplet (P, S ,Q) with the starting point P, the final point Q, and some intermediate point S . The center C and

direction of traversal, or some measure of curvature, can be given instead of S .

A minimal specification is (P,Q, δ), including the extremes and the signed angular displacement δ ∈ (−2π,+2π), which fixes

both length and direction of traversal (Fig. 2). Null curvature, with δ = 0, indicates a linear segment. From (P,Q, δ) we obtain the

center C, radius r, and absolute angle θ of the initial point. Arc length is l = |rδ| and the extremes can be written as

P = C + reiθ, Q = C + rei(θ+δ). (1)

In addition to the geometric features of the constituent arcs, we also need the values of the parameter t at the extremes. Let

L =
∑

k lk be the length of the whole curve. For the k-th arc we obtain the normalized length τk = lk/L and the initial parameter
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Fig. 2. Oriented arcs from (0,0) to (0,1) for several values of δ.

Table 1. Extended representation of the test curve in Fig 3.
k tk τ P Q C r δ v υ

0 0.000 0.332 0.3 0.0 1.0 0.2 0.53 0.52 0.566 1.396 4.200
1 0.332 0.516 1.0 0.2 0.0 -0.2 0.33 0.42 0.703 -1.745 -3.383
2 0.848 0.152 0.0 -0.2 0.3 0.0 1.979 1.319

tk =
∑

j<k τ j, so that Pk = Z(tk) and Qk = Z(tk + τk) = Pk+1 = Z(tk+1). Finally, we obtain the angular speed vk = δk
τk

. Both tk and τk

depend on all the pieces of the curve and must be computed in a preprocessing step.

All subsequent computations can be concisely expressed in terms of the following extended representation of the arcs as parts

of a curve:

Ak = (P,Q,C, r, θ, δ, tk, τ, v) (2)

(For clarity of notation, we omit the index k in a variable if there is no risk of confusion.)

2.2. Straight line segments

The special case of a straight path is specified by the extremes and the linear velocity υ =
Q−P
τ

.

Sk = (P,Q, tk, τ, υ) (3)

Fig. 3 shows the minimal description of a simple test curve composed of three sections, and Table 1 shows the corresponding

extended representation.
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Fig. 3. Test curve.

2.3. Union and subdivision of arcs

The above representation is suitable for efficient fusion of consecutive arcs and division of one arc into fragments. These

operations are needed for curve transformation and simplification.

Two consecutive arcs with common center also share radius and angular speed, so A1 = (P, S ,C, r, θ, δ1, t0, τ1, v) and A2 =

(S ,Q,C, r, · , δ2, · , τ2, v) are equivalent toA = (P,Q,C, r, θ, δ1 + δ2, t0, τ1 + τ2, v).

Reciprocally, A = (P,Q,C, r, θ, δ, t0, τ, v) can be divided into two consecutive fragments A1 = (P,D,C, r, θ, δγ, t0, τγ, v) and

A2 = (D,Q,C, r, t0 + τγ, δ(1 − γ), θ + δγ, τ(1 − γ), v) at any point D = C + ri(θ+δγ) located at a given proportion of length γ ∈ (0, 1).

The union and division of line segments is also immediate.

Other curve sections are not affected by these operations.

2.4. Transformation of arcs

Circular arcs are also very convenient for the implementation of curve transformations.

Metric transformations preserve angles and ratios of distances, so in the extended representation we must only transform P, Q,

and C, scale r, and update θ.

Affine and projective transformations distort circles into ellipses, which can be accurately approximated by circular arcs (Rosin,

1999; Chandrupatla and Osler, 2008). Therefore, arcs can be efficiently warped by subdivision and transformation of the extremes

and a few intermediate points. In this case the preprocessing step must be redone to update the parameterization, but the whole
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Table 2. Selected Fk(ω) terms of the test curve (real and imaginary parts).
k Fk(−3) Fk(−2) Fk(−1) Fk(0) Fk(1) Fk(2) Fk(3)
0 0.008 -0.031 -0.082 0.045 0.054 0.172 0.224 0.005 0.068 -0.188 -0.104 -0.068 -0.015 0.048
1 0.011 0.062 0.111 -0.013 -0.285 0.023 0.290 -0.079 -0.144 0.031 0.042 0.055 0.007 -0.048
2 -0.000 -0.010 0.004 -0.016 0.012 -0.019 0.023 -0.015 0.030 -0.005 0.030 0.008 0.022 0.019

process is much faster than the explicit transformation of a densely sampled sequence of points, which must also be uniformly

resampled again if the FFT is to be used.

The number of divisions required to achieve a given accuracy depends on the curvature of the arc, and also on the amount

deformation, as illustrated in Fig. 4.

Fig. 4. Transformation of arcs via subdivision. Left: original curve. Center: two divisions per arc, not enough for high curvature sections. Right: four
divisions per arc.

3. Fourier coefficients

The coefficient F(ω) of the Fourier series of a curve Z(t) ∈ C, defined piecewise on t ∈ [0, 1) as described above, and extended

periodically outside, is the sum of contributions of each fragment:

F(ω) =

∫ 1

0
Z(t)e−i2πωtdt =

n−1∑
k=0

Fk(ω), (4)

where

Fk(ω) ≡
∫ tk+1

tk
Zk(t)e−i2πωtdt. (5)

In this section we derive simple expressions for Fk(ω).

3.1. Circular arc

Let Hk ≡ e−i2πtk . For Zk(t) ∼ (P,Q,C, r, θ, δ, tk, τ, v), the term Fk(ω) can be written as

Fk(ω) = α(ω,Q) Hω
k+1 − α(ω, P) Hω

k , (6)

where

α(ω, x) =
i(x −C)
2πω − v

+
i C
2πω

(7)
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Proof. This section of the curve can be parameterized as

Zk(t) = C + rei(vt+b), t ∈ [tk, tk+1), (8)

with b = θ − vtk, so that

vtk + b = θ, P −C = reibevtk

vtk+1 + b = θ + δ, Q −C = reibevtk+1 (9)

Then (5) becomes

Fk(ω) = C
∫ tk+1

tk
e−i2πωtdt + reib

∫ tk+1

tk
e−i(2πω−v)tdt (10)

The first integral is immediate:

C
∫ tk+1

tk
e−i2πωtdt =

iC
2πω

(Hω
k+1 − Hω

k ). (11)

The second one is also very simple and can be compactly expressed in terms of the arc extremes:

reib
∫ tk+1

tk
e−i(2πω−v)tdt =

ireib

2πω − v

(
eivtk+1 Hω

k+1 − eivtk Hkω
)

=

=
i

2πω − v

(
(Q −C)Hω

k+1 − (P −C)Hω
k

)
. (12)

Eq. (7) follows directly from rearrangement of (11) and (12).

There are two special cases of (10) not covered by (7). For ω = 0 it reduces to

Fk(0) = C
∫ tk+1

tk
dt + reib

∫ tk+1

tk
eivtdt =

= Cτ + reib 1
iv

(eivtk+1 − eivtk ) = Cτ +
Q − P

iv
, (13)

and for v = 2πω we have
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Fk(ω) = C
∫ tk+1

tk
e−i2πωtdt + reib

∫ tk+1

tk
dt =

=
iC

2πω
(Hω

k+1 − Hω
k ) + τreib =

=
iC

2πω
(Hω

k+1 − Hω
k ) + τ

P −C
eivtk

(14)

3.2. Straight line segment

For Zk(t) ∼ (P,Q, tk, τ, υ) the contribution Fk(ω) can also be written as (6), with

α(ω, x) =
ix

2πω
+

υ

4π2ω2 (15)

and the special case

Fk(0) =
P + Q

2
τ. (16)

Proof. Eq. (15) follows directly from the parameterization

Zk(t) = υt + b, t ∈ [tk, tk+1), (17)

and the elementary integral

∫
(υt + b) eatdt =

1
a

(
υt + b −

υ

a

)
eat, (18)

with υtk + b = P, υtk+1 + b = Q, and a = −i2πω. The special case ω = 0 is also immediate.

Table 2 shows the numeric values of a few Fk(ω) terms for the testing curve in Fig 3. From the raw Fourier coefficients any

standard invariant descriptor can be readily obtained.

Remark. For piecewise-linear functions it is customary to group the α(ω, · ) terms of consecutive segments, canceling the

contributions of Qk = Pk+1 in (15), and producing a simple expression in terms of the curvature υk − υk−1 at each node (Burkhardt,

2007). An analogous (although not so simple) grouping could be developed for consecutive arcs but it is less useful as the curve

freely combines arcs and segments with four possible kinds of path junctions at each node.
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3.3. Norm

The vector of coefficients of a truncated Fourier series FΩ = {Fω} with |ω| ≤ Ω is a compact, low-pass representation of

a continuous curve using 2Ω + 1 complex numbers. To be useful in practice we need information about the accuracy of the

approximation, that can be quantified by the norm ε of the discarded terms. From Parseval’s Theorem,

|Z(t)|2 =

∫ 1

0
Z(t)Z(t)dt =

+∞∑
ω=−∞

|Fω|
2 = |FΩ|

2 + ε2. (19)

The norm |Z(t)|2 can be easily computed as the sum of simple contributions from each fragment:

|Z(t)|2 =

∫ 1

0
Z(t)Z(t)dt ≡

n−1∑
k=0

N2
k (20)

For arcs:

N2
k =

∫ tk+1

tk
|C + rei(vt+b)|2dt =

=
(
|C|2 + r2

)
τ +

2
a

Im
(
(Q − P)C

)
. (21)

For segments:

N2
k =

∫ tk+1

tk
|υt + b|2dt =

=

[
|υ|2

3
t3 + Re

(
υb

)
t2 + |b|2 t

]tk+1

tk

. (22)

Table 3 shows the numeric values of the contributions to the norm of the test curve in Fig. 3.

Table 3. Contributions to the norm.
k |Zk(t)|2

0 0.16738
1 0.23321
2 0.00657

A normalized measure of preservation of shape details in the approximation, independent of position and size, is given by the

following ratio, taking into account the frequency components above the basic elliptic model given by F1.

ξ2 ≡
|FΩ|

2 − |F1|
2

|Z(t)|2 − |F1|
2 (23)
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Table 4. Contributions to the second order moments.
k m00 m10 m01 m20 m02 m11

0 0.09597 0.04019 0.00853 0.02111 0.00123 0.00373
1 -0.28792 -0.11776 0.01449 -0.06437 -0.00531 0.00425
2 0.03000 0.00300 -0.00200 0.00045 0.00020 -0.00015

4. Moments

The moments of a planar region enclosed by a piecewise-circular curve can also be obtained from the extended description

proposed in Section 2. Here we change to a real representation Z(t) = (x(t), y(t)) ∈ R2. Using Green’s Theorem the raw moments

can again be expressed as a sum of contributions from each fragment:

mpq ≡

∫∫
S

xpyqdxdy =
1
2

∮
Z

[
xpyq+1

q + 1
dx −

xp+1yq

p + 1
dy

]
=

1
2(q + 1)

n−1∑
k=0

Ak −
1

2(p + 1)

n−1∑
k=0

Bk, (24)

where

Ak =

∫ tk+1

tk

(
x(t)py(t)q+1 dx

dt

)
dt (25)

Bk =

∫ tk+1

tk

(
x(t)p+1y(t)q dy

dt

)
dt. (26)

4.1. Circular arc

For an arc section Zk(t) ∼ (P,Q,C, r, θ, δ, tk, τ, v), parameterized as x(t) = cx + r cos(t), y(t) = cy + r sin(t), with t ∈ [θ, θ+ δ), and

C = (cx, cy), we get

Ak =

∫ θ+δ

θ

(
(cx + r cos(t))p(cy + r cos(t))q+1(−r sin(t)

)
dt (27)

Bk =

∫ θ+δ

θ

(
(cx + r cos(t))p+1(cy + r cos(t))q(r cos(t)

)
dt. (28)

Expanding powers we obtain a linear combination of integrals of the form

Tm,n =

∫
sinm(t) cosn(t)dt, (29)

that can be evaluated by means of a reduction formula (Wikipedia contributors, 2018):

Tm,n =

− sinm−1(t) cosn+1(t)
m+n + m−1

m+n Tm−2,n
sinm+1(t) cosn−1(t)

(m+n) + n−1
m+n Tm,n−2

(30)
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Therefore, any moment of a region with a piecewise-circular boundary can be automatically computed by a recursive algorithm.

However, simpler explicit expressions are convenient for the widely used lower order moments. Let us denote the centered extremes

of the arc as (x1, y1) ≡ P −C = (r cos(θ), r sin(θ)), and (x2, y2) ≡ Q −C = (r cos(θ + δ), r sin(θ + δ)). With the help of the symbolic

algebra software sympy (Meurer et al., 2017) we can derive the following formulas for the contributions of each fragment:

2 m00 = δr2 − cxy1 + cxy2 + cyx1 − cyx2 (31)

12 m10 = 6δcxr2 − 3c2
xy1 + 3c2

xy2 + 6cxcyx1 − 6cxcyx2+

+ 3cyx2
1 − 3cyx2

2 − 3x2
1y1 + 3x2

2y2 − 4y3
1 + 4y3

2 (32)

12 m01 = 6δcyr2 − 6cxcyy1 + 6cxcyy2 + 3cxx2
1 − 3cxx2

2+

+ 3c2
y x1 − 3c2

y x2 + 4x3
1 + 3x1y2

1 − 4x3
2 − 3x2y2

2 (33)

24 m20 = 12δc2
xr2 + 3δx4

2 + 6δx2
2y2

2 + 3δy4
2 − 4c3

xy1 + 4c3
xy2+

+ 12c2
xcyx1 − 12c2

xcyx2 − 12cxcyy2
1 + 12cxcyy2

2 − 12cxx2
1y1+

+ 12cxx2
2y2 − 16cxy3

1 + 16cxy3
2 + 4cyx3

1 − 4cyx3
2−

− x3
1y1 − 3x1y3

1 + x3
2y2 + 3x2y3

2 (34)

24 m02 = 12δc2
yr2 + 3δx4

2 + 6δx2
2y2

2 + 3δy4
2 − 12cxc2

yy1+

+ 12cxc2
yy2 − 12cxcyy2

1 + 12cxcyy2
2 − 4cxy3

1 + 4cxy3
2+

+ 4c3
y x1 − 4c3

y x2 + 16cyx3
1 + 12cyx1y2

1 − 16cyx3
2−

− 12cyx2y2
2 + 3x3

1y1 + x1y3
1 − 3x3

2y2 − x2y3
2 (35)
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48 m11 = 24δcxcyr2 − 12c2
xcyy1 + 12c2

xcyy2 − 6c2
xy2

1 + 6c2
xy2

2+

+ 12cxc2
y x1 − 12cxc2

y x2 + 16cxx3
1 + 12cxx1y2

1 − 16cxx3
2−

− 12cxx2y2
2 − 6c2

yy2
1 + 6c2

yy2
2 − 12cyx2

1y1 + 12cyx2
2y2−

− 16cyy3
1 + 16cyy3

2 + 3x4
1 − 3x4

2 − 3y4
1 + 3y4

2 (36)

4.2. Straight line segment

For a linear section Zk(t) ∼ (P,Q, tk, τ, v) we use the parameterization Z(t) = P + (Q − P)t, for t ∈ [0, 1). Let P = (x1, y1),

Q = (x2, y2), ∆x = x2 − x1, and ∆y = y2 − y1. It can be shown (Ruiz et al., 2017) that

Ak = ∆x Ip,q+1(x1,∆x, y1,∆y)

Bk = ∆y Ip+1,q(x1,∆x, y1,∆y) (37)

where

In,m(x, u, y, v) ≡
∫ 1

0
(x + ut)n(y + vt)mdt =

=

n∑
j=0

m∑
k=0

(
n
j

)(
m
k

)
x jun− jykvm−k

n + m − j − k + 1
.

(38)

The terms for the moments up to second order are shown for comparison with the expressions for circular arcs.

2 m00 = x1y2 − x2y1 (39)

12 m10 = x2
1y1 + 2x2

1y2 − 2x1x2y1+

+ 2x1x2y2 − 2x2
2y1 − x2

2y2 (40)

12 m01 = −x1y2
1 + 2x1y1y2 + 2x1y2

2−

− 2x2y2
1 − 2x2y1y2 + x2y2

2 (41)
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12 m20 = x3
1y1 + x3

1y2 − x2
1x2y1 + x2

1x2y2−

− x1x2
2y1 + x1x2

2y2 − x3
2y1 − x3

2y2 (42)

12 m02 = −x1y3
1 + x1y2

1y2 + x1y1y2
2 + x1y3

2−

− x2y3
1 − x2y2

1y2 − x2y1y2
2 + x2y3

2 (43)

24 m11 = 2x2
1y1y2 + x2

1y2
2 − 2x1x2y2

1+

+ 2x1x2y2
2 − x2

2y2
1 − 2x2

2y1y2 (44)

Table 4 shows the numeric values of above terms for the test curve. Derived features such as the mean and the covariance

coefficients, useful for shape normalization, are directly obtained from the raw moments:

ηpq = mpq/m00

µx = η10

µy = η01

σ2
x = η20 − µ

2
x

σ2
y = η02 − µ

2
y

σxy = η11 − µxµy (45)

Remark. The location and scale parameters derived from the computationally cheaper elliptic approximation F1 of a curve are

not suitable for affine normalization. They in general differ from the moments of the enclosed area (Fig. 5).

Fig. 5. Comparison of the F1 elliptic approximation of the test curve (green) and the covariance ellipse of the enclosed region (blue).
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Higher order moments, useful for construction of invariants (Hu, 1962) and canonicalization (Ruiz et al., 2017), are not included

here for lack of space but are available online (see Section 6.1).

5. Computational complexity.

Due to the similar mathematical nature of the circular arcs and the Fourier basis, the proposed curve representation does not

introduce any computational overhead: the cost of an arc (7) is comparable to that of a linear segment (15).

The standard FFT is extremely efficient, but it requires dense uniform resampling to accurately model convoluted shapes,

introducing appreciable overhead for normalization and alignment transformations. Therefore, a piecewise-circular model is com-

petitive if the curve can be accurately described by a moderate number of arcs and segments and, as usual, only a few low-frequency

coefficients are required.

Regarding the moments, Table 5 shows the computational cost of the first and second order moments, as measured by the

number of terms per fragment. A circular arc is less than 3 times as costly (88 terms) as a linear segment (36 terms). Therefore,

when approximating a digitized curve, if the prescribed tolerance is satisfied, it is generally favorable to introduce a circular arc

instead of three or more segments.

Table 5. Number of terms per fragment for mpq

p, q linear arc
0,0 2 5
1,0 6 11
0,1 6 11

p, q linear arc
2,0 8 20
0,2 8 20
1,1 6 21

6. Experiments

In this section we verify the derived formulas and discuss the advantages of the proposed approach. Fig. 6 shows simple

synthetic curves together with their corresponding low frequency reconstructions from truncated series. The moments of each

enclosed region are displayed by means of an ellipse with the same mean and covariance matrix (Safaee-Rad et al., 1992). The

results are fully consistent with those of the standard FFT and moment algorithms working on densely sampled curves. Shape

normalization is illustrated in the bottom-right case. It shows a whitened version of the test shape, transformed as described in Sect.

2.4 to get a circular covariance ellipse.

Fig. 7 shows a similar analysis of digitized contours taken from natural images. The Fourier coefficients and moments are

efficiently computed from piecewise-circular approximations obtained by a simple greedy extension of the method of Douglas and

Peucker (1973): for each recursive subdivision of the curve, if a linear piece cannot be fitted we try the arc defined by the extremes

and the furthest point. Though not optimal, it reduces considerably the number of fragments.
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Fig. 6. Low frequency reconstruction FΩ (green) and covariance ellipse (gray) of illustrative piecewise-circular curves (black). Reconstruction accuracy is
measured by the normalized ratio ξ defined in (23).

190  22 145  10 209  18 65  8

860  16 484  7 597  10 686  13

Fig. 7. Low frequency reconstruction F10 (light green) and covariance ellipse (gray) of piecewise-circular approximations (black) to digitized contours
(red). The reduction in the number of nodes is indicated at the top of each diagram.
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Simple polygonal approximations are usually suitable for low accuracy applications. Still, circular arcs are in general more

effective, as shown in Fig. 8. The linear fragments become apparent in high frequency reconstructions (b). More importantly, a

noticeable bias may appear in the low frequency coefficients (d) and moments (c) when, as usual, the nodes of the polygon are

selected from the original curve. This has adverse effects for accurate alignment and shape normalization. In contrast, piecewise-

circular approximations produce much better estimates for all frequencies and moments at a fraction of the cost.

6.1. Reproducible research

The source code for this work and jupyter notebooks with the experiments are freely available online1.

7. Conclusion

Many natural and artificial shapes can be compactly represented by piecewise circular and linear curves. This model offers an

excellent balance between analytic simplicity and accuracy, using several arcs to approximate fragments of variable curvature. We

have developed practical algorithms for basic analysis tools, namely Fourier coefficients and moments, that can now be applied

to more demanding applications at a fraction of the computational cost. For instance, Jacobians of descriptors extracted from

deformable shapes, needed for optimization of alignment transformations, can be efficiently estimated on low cost devices. Future

work includes an optimized implementation for visual navigation applications, and research on fast extraction of circular arcs on

the fly from images.
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