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Abstract

This paper presents a fast and accurate affine canonicalization method for planar

shapes. This method improves on previous ones based on iterative optimization that

produce multiple canonical versions. Canonicalization provides a common reference

frame for shape comparison without the loss of discrimination ability often caused

by invariant features. It also gives for free the alignment transformation between any5

pair of shapes. The proposed method is based on the properties of the joint angular

distribution of marginal skewness and kurtosis, the so-called SK signature, which can

be efficiently computed in closed form from the raw image moments. The experiments

demonstrate that the method is robust to the non-affine distortions caused by natural

perspective image conditions. Thus, it can be used as an automatic preprocessing step10

to add affine invariance in statistical pattern recognition applications.
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1. Introduction

Visual recognition of planar shapes is a fundamental problem in pattern recognition

and computer vision, with applications in many diverse fields including autonomous

robot navigation, surveillance, document understanding, localization, and augmented15

reality. The proliferation of low-cost mobile devices equipped with high-quality cam-

eras (e.g., smartphones and drones) increasingly demands simpler and more accurate

shape recognition methods.

A common approach to solving this problem is based on standard classifiers using

a suitable set of invariant features [1, 2, 3, 4, 5, 6]. These methods are fast and do not20
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require costly learning stages. However, simple techniques to achieve invariance may

introduce additional perceptual aliasing, reducing discrimination ability. Aggregation

methods based on point distributions [7] or shape contexts [8] have similar drawbacks.

Shape discrimination can be improved by alignment, obtaining an explicit model-

target transformation [9, 10, 11, 12, 13]. This allows comparing registered shapes25

directly in the measurement domain by means of a simple Euclidean metric or the

more powerful Hausdorff distance [14, 15]. The inferred transformations are also use-

ful to discard inconsistent matching hypotheses and provide pose estimates for self-

localization and navigation applications [16]. Several ideas have been proposed for

homography estimation from planar contours [17, 18, 19, 20, 21], including recursive30

probabilistic filters [22, 23], statistical theory of shape [24, 7, 14], and differential

geometry [25]. Another interesting approach to alignment is based on estimating a

non-parametric probability model for the transformations of a set of training instances

with respect to a “congealed” version determined by minimization of pixelwise en-

tropy [26, 27]. In general, alignment techniques are computationally expensive for35

multiclass shape recognition, especially when the parameters of the transformation

cannot be expressed in closed form (due, for example, to the lack of explicit corre-

sponding landmarks) and iterative approximations are needed for registration of all

possible target-model pairs.

The extraordinary computing power of recent graphic processing units (GPU) has40

produced a considerable interest in machine learning techniques that use massive amounts

of training data (natural or synthetic). In particular, deep convolutional neural networks

have proved remarkably successful in many challenging vision applications [28], in-

cluding image alignment [29, 30]. In a promising step towards automatic canonical-

ization, generic spatial transformer neural modules allow the networks to learn how to45

transform feature maps to minimize the training error [31]. However, this kind of deep

models have some disadvantages such as long learning times, ad-hoc selection of the

network architecture, heuristic tuning of hyperparameters, and difficult interpretation

of the learned models.

Hierarchical probabilistic generative models have also been recently proposed [32].50

This approach admits a wide range of transformations, requires very few training sam-
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ples, and supports transfer learning between categories. Moreover, the underlying per-

ceptual model has some cognitive plausibility. These advantages, though, come at the

cost of very long inference times.

In contrast with the above general approaches, we are interested here in the specific55

problem of efficient planar shape recognition from natural images captured by ordinary

cameras. Many computer vision methods assume weak perspective projection, mod-

eled by simple affine transformations. This assumption usually holds in practice when

object depth is small compared to the distance to the camera. In any case, it is not a se-

vere limitation as full perspective shape recognition without explicit correspondences60

can be easily achieved by iterative refinement of a good affine initial solution [16, 33].

Therefore, we will explore affine alignment methods that are robust to moderate depar-

tures from weak perspective caused by out-of plane rotation. We will focus on efficient

one-shot learning (using a small number of training samples for each class, ideally just

one) and closed-form algorithms for the whole data processing pipeline.65

The rest of the paper is organized as follows. Section 2 reviews the canonicalization

approach to registration. Section 3 introduces the so called SK signature and describes

its applications to shape recognition and alignment. A closed-form, efficient canoni-

calization algorithm based on this signature is developed in Section 4. The stability and

range of application of the proposed method is experimentally evaluated in Section 5.70

The paper concludes with a summary of contributions and future research directions.

2. Canonicalization

Optimal registration is computationally expensive for classification applications,

requiring a separate optimization process for each model. A faster alternative is pro-

vided by canonicalization, which allows precomputation of a good approximation to75

all possible alignment transformations and evaluation of shape similarity in a common

reference frame. A traditional alignment transformation works with two input images,

while canonicalization needs just one.

Invariance to a group of transformations can be achieved without any additional

loss of class separability by using canonical representatives. Different shapes corre-80
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spond to the classes of equivalence induced on the set of planar regions by the trans-

formations in the group. Each shape is represented by a particular canonical element

in the class, characterized by certain conventional geometric properties. The alignment

transformation Tab between any two elements a and b can be immediately obtained

as Tab = C−1a Cb from the respective canonicalization transformations Ca and Cb.85

This process is much faster than computing a different transformation from scratch

for every model-target pair1. Furthermore, shape similarity can be directly evaluated

in the canonical frame, making on-line classification very efficient as only one ‘warp-

ing’ transformation of the target shape is required. This approach is still suboptimal

because the abstract canonical frame does not have any physically meaningful met-90

rics, and the canonicalization transformations are not optimized to reduce registration

residuals. However, as demonstrated in the experimental section, it provides excellent

approximations for most practical purposes.

Canonicalization for the planar affine group (6 d.o.f.) is generally thought to be a

simple task: we first apply a whitening transformation2 and then fix one single remain-95

ing rotational degree of freedom [34, 35]. In other words, we must find a characteristic,

or “intrinsic” orientation of the (whitened) shape. In principle this can be easily done by

considering geometric properties like big concavities, bitangents, most distant points,

or Fourier phases, among many other ideas [36]. Unfortunately, most of these propos-

als only work well for special sets of shapes. Moreover, they do not always provide a100

unique orientation even for clearly asymmetric figures, and are unstable under noise or

small non-affine distortions.

A popular method to detect a dominant orientation is based on the mode of gradient

directions. This method is commonly used by keypoint detectors like SIFT to normal-

ize salient image patches in order to compute invariant feature descriptors [37]. This105

has proved very successful for highly textured images, but in flat or binary regions typ-

1Certain highly symmetric shapes can be taken to the canonical version via different and equally valid

alternative transformations; this ambiguity should be managed in an application-dependent fashion.
2This denotes an affine transformation that produces uncorrelated variables with zero mean and unit

variance. This preprocessing transformation is widely used in data analysis and can be easily computed in

closed-form from the first and second-order moments (see Appendix I).
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ically arising in shape recognition the aggregated gradient is a purely local property of

the boundary. This feature disregards the relative location and structure of the internal

points and it is sensitive to noise. Rounded shapes do not have strongly dominant gra-

dient orientations, and those with straight edges may have multiple histogram maxima110

even though their structure is rich enough to induce a single distinguished orientation.

A promising canonicalization approach using global image information is based

on Independent Component Analysis (ICA) [38]. In contrast with the maximum vari-

ance projections of a data set obtained by the principal components, ICA looks for

a linear transformation such that the new variables are as much statistically indepen-115

dent as possible. This new representation may provide a useful reinterpretation of the

data set in terms of meaningful components. For example, a common application is

blind separation of mixed signals. Computational ICA techniques typically start from

whitened data and then iteratively optimize an orthogonal transformation to get new

variables as different from Gaussian distributions as possible. The key idea is that any120

linear combination of (non Gaussian) random variables has more entropy, and there-

fore is “more Gaussian”, than the original variables. Practical optimization costs are

marginal kurtosis and relative entropy. Efficient implementations include FastICA [39]

and RobustICA [40].

In the context of shape recognition, ICA has been applied in order to compute affine125

invariant descriptors and alignment homographies [41, 42]. These methods eventually

work with Fourier or Zernike rotation invariant features, which partially defeat the

advantages of canonicalization. Other ICA methods [43, 44] work with the contour

coordinates as separate 1D signals instead of the whole set of 2D points (the joint

distribution) in a general figure, which may include separate fragments and holes.130

The above proposals use standard ICA implementations and produce unnecessary

multiple orientations. While general multidimensional ICA require expensive iterative

local optimization, the 2D case arising from the shape orientation problem is the sim-

plest one, with just one degree of freedom. In offline applications it could even be

solved by exhaustive search of all rotation angles. In this paper we present a fast and135

simple closed-form solution for affine canonicalization, based on the concepts devel-

oped in the next section.
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3. The Skewness-Kurtosis signature

We will informally use the term ‘shape’ to refer to a planar binary region, although

most of the following results are equally valid for gray level images.140

A region R is defined by its indicator function IR(x, y) = 1 if (x, y) ∈ R and

IR(x, y) = 0 otherwise. The sum of function f over R is

ER{f} =

∫∫
R2

IR(x, y)f(x, y)dxdy, (1)

and the moments of R are

mpq = ER{xpyq}. (2)

Let λ21 and λ22 be the eigenvalues of the covariance matrix of R. Degenerate regions

(λ2/λ1 � 1) cannot be whitened in a numerically stable way, but in that case the145

orientation is trivially given by the principal direction3

The symbol µpq denotes moments of whitened regions, which verifym10 = m01 =

m11 = 0 and m00 = m20 = m02 = 1.

Except in certain symmetric cases that require special treatment, the marginal mo-

ments of any variable, say x, µp0, p > 2, depend on shape orientation and can be150

used to specify a canonical affine invariant reference frame. We will focus on the sim-

plest and most interesting cases: p = 3 (skewness) and p = 4 (kurtosis). Higher

order moments are also related to symmetry and uniformity—more precisely, weight

of tails—and do not provide useful additional information for our purposes.

3.1. Marginal moments155

Consider the marginal skewness and kurtosis of the whitened shape for every clock-

wise rotation angle θ around the origin:

3 It is advisable to use a soft threshold on λ2/λ1 such that the borderline shapes are treated in a special

way: they are initially whitened, but if the subsequent processing stages produce a low-confidence result we

reconsider the shape as one-dimensional.
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S(θ) = ER{(x cos θ + y sin θ)3},

K(θ) = ER{(x cos θ + y sin θ)4}.
(3)

Both functions are fully determined by their values in θ ∈ [0, π), and verify the

following periodicity conditions:

S(θ + π) = −S(θ),

K(θ + π) = K(θ).
(4)

Similar to the geometric representation of a covariance matrix as an ellipse of un-160

certainty, a measure of uniformity and asymmetry along each direction can be repre-

sented by the following characteristic 2D curves:

S(θ) = (S(θ) cos θ, S(θ) sin θ),

K(θ) = (K(θ) cos θ,K(θ) sin θ).
(5)

Fig. 1 illustrates the aspect of these functions for an example image. They are

strongly sensitive to orientation although the distribution of image intensities is isotropic

up to second order.165
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kurtosis

Figure 1: Left: original image. Center: whitened image and superposed polar representation S (red) and K

(blue). Right: corresponding angular functions S and K.

In the polar plot in Fig. 1 we actually show maxK − K to emphasize the most

subgaussian projections. As shown below, for 2D distributions with finite support,

subgaussianity corresponds better to a subjective concept of distinguished or intrinsic

orientation. Kurtosis consistently detects the most uniform projections and it is very
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robust to non-affine perturbations. There are, however, up to two local minima together170

with upside-down ambiguity, denoted by K1 = K(θ1) = K(θ1 + π) <= K2 =

K(θ2) = K(θ2 + π), totaling four candidate directions in perfectly orientable regions.

Because of antiperiodicity, S does not suffer from the ‘upside-down’ ambiguity of

K. If max(S) > 0 we have at most three local maxima S1 = S(α1) ≥ S2 = S(α2) ≥

S3 = S(α3), and hence there are up to three distinguished directions. If the local175

maxima are not all equal, they can be used to define a single orientation. For example,

we could choose α1 if S1 > S2 or α3 if S2 > S3.

Skewness has actually been used to estimate the alignment rotation for registration

of point samples [45]. Together with his well-known invariants, Hu [1] also proposed

using the sign of µ30 to remove the 180◦ ambiguity of the principal axis in an early180

attempt to achieve metric canonicalization. Unfortunately, some clearly orientable fig-

ures produce very weak S responses and, as shown in Section 5.1, the orientation

induced by S is unstable, so skewness cannot be the only basis of a general canoni-

calization method. Instead, it is an excellent method to remove the ambiguity of the

candidate orientations provided by kurtosis.185

To achieve this, we define a global orientation detector S based on the ‘average’

location of the curve S, which is more stable than any local αk. It can be easily proved

(see Section 4.2) that S reduces to the following simple expression:

S ≡ 1

2π

∫ 2π

0

S(θ)dθ =
3

8
(µ30 + µ12, µ21 + µ03). (6)

For a whitened region, if ||S|| is large, S defines a unique affine invariant ori-

entation. Interestingly, ||S||2 is essentially the fourth traditional orthogonal invariant190

proposed by Hu [1]. It was derived from algebraic considerations and it can now be

given an intuitive geometrical interpretation. This simple idea has apparently not been

proposed before.

3.2. Orientability

In addition to S we define the following descriptors (Fig. 2):195
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r ≡ maxK −minK,

t ≡ K2 −K1,

s ≡ ||S||.

(7)

Smax

S
K1

K4

K2

K3

t

gr

Figure 2: Orientability properties of the SK signature. Smax and g will be discussed later.

The ‘orientability’ of any figure on the basis of the third and fourth moments can

be derived from r, t, and s. Figure 3 shows S and K for several basic shapes together

with the corresponding values of r, t, and s.

If r is small, the figure is essentially not orientable (top row). If r is large and s

is small, the figure is semi-orientable (second row). In this case, if t is small there are200

four alternative orientations, or else there are just two. Finally, if r and s are both large

we can define a single orientation (bottom row). Again, if t is small we must choose

from the four extrema, or else just from the two dominant ones. This contrasts with

previous ICA-based efforts [46] that produce eight candidate orientations.

In practice we must use reasonable thresholds for these conditions to be robust to205

noise and non-affine distortions. A general procedure to do this will be described in

Section 3.4. We first provide a general impression of the stability of the characteristic

curves. Figure 4 illustrates the response of S and K to salt and pepper noise and image

dilations in a few test images. Dilation produces a slight attenuation of the responses

but orientation is not affected. Noise has a similar effect.210

The characteristic curves are also reasonably resistant to non-affine deformations.

Fig. 5 shows the signatures of a letter imaged from different view points with moderate

out-of plane rotation. An experimental study of robustness will be presented in Section

5.

9



Figure 3: Geometric representation of marginal kurtosis K(θ) (blue) and skewness S(θ), as well as S (red)

for whitened regions with different ‘orientability’ properties. The values of r, 1−t/r, and 10s are displayed

above each case.

Figure 4: Response of S and K to dilation and noise.
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Figure 5: Stability of the SK signature for non-affine deformations. The first row shows a set of views

with out-of-plane rotation caused by a 30◦ tilt angle, assuming that the original view has a field of view

(FOV) equal to 40o. The second and third rowshow the corresponding whitened shapes and SK signatures,

respectively.

3.3. The joint SK signature215

The extrema of S and K, together with S, induce virtual reference points and

directions that can be transferred to the original observation frame and are covariant

with affine transformations (Fig. 6).

Figure 6: Reference points and directions induced by K and S back-projected to the input frames.

It is also possible to combine the two curves into an invariant object. Let us define

the joint skewness-kurtosis signature of a region as the 2D parametric curve:220

SK(θ) ≡ (S(θ),K(θ)). (8)

In contrast with the separate functions S(θ) and K(θ), the joint SK signature as a

curve independent of the parameter θ in the abstract (S,K) plane is an affine invariant

property of the region. Fig. 7 illustrates the signatures of different shapes. Even though

S andK are only a tool for efficient canonicalization, the joint SK signature is actually

11



highly discriminant and useful to define simple feature vectors for the classification or225

fast rejection of bad matches, as demonstrated in Section 5.5.

Figure 7: The joint SK signatures of a set of alphanumeric characters in a standard sans-serif font.

3.4. Canonicalization procedure

Our main goal is to select a canonical direction from the orientability properties r,

t, and s described above. A single orientation must be determined when possible, but

in order to correctly deal with symmetries, noise, and non-affine distortions, in some230

weakly orientable cases we must provide a set θ∗ of candidate orientations. This can

be accomplished by the following selection algorithm. Its sensitivity is controlled by

three thresholds εr, εt, and εs, one angular tolerance δ, and one offset o.

i. If r < εr the shape is not orientable. Otherwise, let θ1, θ2, θ3 = θ1 + π, and

θ4 = θ2 + π be the four local minima of K.235

ii. If 1 − t/r < εt then Θ = {θ1, θ3}. Otherwise, Θ = {θ1, θ2, θ3, θ4}. (We discard

directions weaker than a proportion εt of the strongest one.)

iii. If s < εs then θ∗ = Θ and stop. Otherwise,

iv. Set up overlapping decision regions for the elements in Θ as depicted in Fig. 8,

and include in θ∗ all the directions associated with the regions containing S.240

In step (iv) we select the orientation more directly indicated by S, or located at

its right side, with the precaution of establishing ambiguity margins of width δ that
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generate two candidates. These common sectors are unavoidable to guarantee that

changes in argS < δ do not result in an abrupt change in the selected orientation.

θ1

θ3

S

θ1

θ4

S

θ3

θ1

o

δ

θ3

θ2

Figure 8: Decision regions for the key step of the selection algorithm.

Fig. 9 illustrates the results of the algorithm on the alphanumeric characters with245

reasonably safe default thresholds: εr = 0.2, εt = 0.75, εs = 0.04, δ = 20◦. The

offset o = 10◦ has been chosen to minimize the number of orientable cases producing

two directions (see letter K). Letter O does not pass the εr test, while number zero is

less rounded and, hence, semi-orientable. The well-defined orientation found for the

letter X in this font (10s = 0.55) was initially considered to be a programming bug, but250

careful inspection of the image revealed that this letter design is actually asymmetric.

Only five weakly orientable shapes (BDPQ8) produce more than a single orientation.

This reduced number of canonical candidates—compared to using all four alterna-

tives per model—has important practical consequences. Due to the quadratic depen-

dence of the number of required model-target comparisons on the average number of255

alternative orientations, classification time becomes much faster with negligible per-

formance degradation (see Section 5).

Figure 10 shows the stability of the canonical version to deformations caused by a

large tilt with large focal length, so that perspective distortion is not very far from the

affine assumption of weak perspective.260

Finally, Figure 11 illustrates shape alignment. If there is a good match, image

registration could be further improved using, for example, the Lucas-Kanade method

[9]. The inverse compositional variant can be applied very efficiently since the Jacobian

of the transformation can be precomputed for each model. In Section 5.4 we study the
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2.02 - 0.95 0.32 - 0.53 3.40 - 0.45 0.25 - 0.52 3.00 - 0.67 2.67 - 1.00 0.99 - 0.80

0.28 - 0.34 4.11 - 1.00 2.61 - 0.98 4.37 - 0.89 1.00 - 0.55 0.03 - 0.72 0.12 - 0.09

0.32 - 0.44 0.39 - 0.58 1.06 - 0.61 0.43 - 0.90 1.11 - 1.00 1.82 - 0.41 2.72 - 0.95

0.79 - 0.81 0.55 - 0.89 0.91 - 0.70 0.30 - 0.78 0.04 - 0.15 2.50 - 0.16 1.77 - 0.76

3.34 - 0.58 0.99 - 0.94 1.16 - 0.95 1.12 - 0.69 4.64 - 0.90 0.26 - 0.60 1.16 - 0.71

Figure 9: Directions selected by the proposed method (green) from the kurtosis extremes (blue) and S (red).

On top of each shape we show 10s and 1− t/r.

Figure 10: Canonical models from perspective views with a 70◦ tilt and large focal length (FOV=10o).

Some deformations look extreme but they are actually close to the affine group.

consequences of evaluating shape similarity in the canonical frame.265

The third and fourth order moments have been previously used for shape alignment

[45] and canonicalization [46] but, to the best of our knowledge, the remarkable joint

properties of K and S have not been fully exploited before. In Section 4 we will de-

velop a simple closed-form algorithm to efficiently compute them from the raw image

moments.270
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Figure 11: Two examples of canonical registration in the observation, model, and canonical reference frames.

Coincidence is shown as white and green areas, and the alignment errors are red and blue. Note the difficulty

of B-8 discrimination in a low resolution image.

4. Computation of the SK signature

We now turn to the computation of the SK signature in (3). Let us define

tpq(θ) = cosp θ sinq θ. (9)

Using this auxiliary function, S(θ) and K(θ) can be written in terms of the third

and fourth order moments of the whitened shape as follows:

S(θ) = µ30t30(θ) + 3µ21t21(θ) + 3µ12t12(θ) + µ03t03(θ),

K(θ) = µ40t40(θ) + 4µ31t31(θ) + 6µ22t22(θ) + 4µ13t13(θ) + µ04t04(θ).
(10)

Any moment µpq can be efficiently computed from the raw moments mpq of the275

raster image as described in Appendix I. Alternately, if the figure is represented com-

pactly by a contour, the moments can be directly computed from powers of node coor-

dinates by using Green’s Theorem (see Appendix II).

Once the nine required moments have been computed by either method, the SK

signature can be numerically obtained by (10) on a discretized domain Ψ with the280

desired angular resolution. This operation can be efficiently performed using precom-

puted values of tpq(θk). In this case S(θk) and K(θk) are just linear combinations or

fixed vectors of dim |Ψ|. Their extrema and distinguishable angles are immediately

obtained from the discretized signature.
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4.1. Extremes of K285

The above numeric solution is accurate enough for many applications and takes a

small proportion of the total computing effort, which for raster images is dominated

by the computation of moments and image warping. Even though this might be suf-

ficient, we also provide an exact and faster closed-form solution. It illustrates some

general properties of the SK signature and may significantly reduce computing time290

in applications using contour-based image representations.

The local extrema of marginal kurtosis satisfy K ′(θ) = 0. Since the trigonometric

terms tpq(θ) verify the following relation,

t′pq(θ) =
d

dθ
cosp θ sinq θ = −p cosp−1 θ sinq+1 θ + q cosp+1 θ sinq−1 θ =

= q tp+1,q−1(θ)− p tp−1,q+1(θ),

(11)

the derivative K ′(θ) is also a linear combination of the same trigonometric terms,

K ′(θ) = 4µ31t40(θ) + 4(3µ22 − µ40)t31(θ) + 12(µ13 − µ31)t22(θ)+

+4(µ04 − 3µ22)t13(θ) + (−4)µ13t04(θ),
(12)

that can be expressed as295

K ′(θ) = 4

4∑
k=0

dk t4−k,k(θ), (13)

where

d0 = µ31

d1 = 3µ22 − µ40

d2 = 3µ13 − 3µ31

d3 = µ04 − 3µ22

d4 = −µ13.

(14)

The roots of K ′(θ) do not change if we divide it by cos4(θ) to get a polynomial in

tan θ:
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t4−k,k
cos4 θ

=
cos4−k θ sink θ

cos4 θ
= cos−k θ sink θ = tank θ. (15)

Therefore the solutions of K ′(θ) = 0 satisfy tan θ = x where x is a root of

4∑
k=0

dkx
k = 0. (16)

This equation can be easily solved by the polynomial root finding routines available300

in all standard scientific packages. There are up to four real solutions: two of them are

maxima of K(θ), corresponding to the most kurtotic projections; the other two are

minima, for the most uniform (more precisely, subgaussian or platykurtic) projections.

If there are only two real solutions then K(θ) does not have the local extremes K2 and

K3 in Fig. 2. Each solution x of (16) gives two angles θ and θ + π from tan θ = x,305

which is consistent with the expected upside-down ambiguity of marginal kurtosis. The

angles θ = ±π/2 cannot be found by this method but this case is easily detectable as

d4 = 0, producing a lower degree polynomial that finds the three remaining solutions.

Although it is not strictly needed by the proposed canonicalization method, a simi-

lar solution can be derived for the three extrema of S(θ) (or any other moment).310

4.2. Closed form expression for S

We now proceed to prove (6). Using the auxiliary function (9) and the expansion

(10) the components of S in (8) can be written as

S(θ) cos(θ) = µ30t40(θ) + 3µ21t31(θ) + 3µ12t22(θ) + µ03t13(θ),

S(θ) sin(θ) = µ30t31(θ) + 3µ21t22(θ) + 3µ12t13(θ) + µ03t04(θ).
(17)

We only need the following integral for selected p and q:

Ipq ≡
∫ 2π

0

tpq(θ)dθ. (18)

This integral cancels out for odd powers, so we immediately get I13 = I31 = 0.315

Integrating by parts we obtain the remaining even powers

I22 =
π

4
, I40 = I04 =

3π

4
, (19)
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which completes the proof.

4.3. Computational complexity

The most expensive step is computing the image moments from a raster image. We

need the 15 raw moments up to order 4: mpq for p ≥ 0, q ≥ 0, and p + q ≤ 4. The320

six ones up to order 2 are required for whitening, hence a common cost for any affine

invariant method. The 9 normalized higher order ones µpq can be derived in closed

form from the raw ones as described in Appendix I. For a w×h image we need∼ 9wh

additional operations to compute the full canonicalization transformation, without the

need of going through an intermediate whitened image.325

In contrast, a histogram of gradient orientations requires two convolutions for the

gradient and element-by-element operations for magnitude, angle, and histogram ac-

cumulation. Using a simple 3× 3 Sobel mask the cost is ∼ (6 + 6 + 3)wh operations.

The gradients must be computed on a whitened image patch, requiring an additional

auxiliary warping operation.330

5. Experiments

Under ideal affine transformations shape alignment will be perfect and recognition

mistakes will be caused by application-dependent circumstances such as class variabil-

ity, allowed shape deformations (e.g., dilations), or image noise. We are more inter-

ested in natural imaging conditions, so we have experimentally measured robustness to335

the non-affine perspective effects caused by tilted views.

5.1. Stability of S vs K

Skewness alone could in theory be used to find a single distinguishable orientation

for a wide range of shapes. Unfortunately, as anticipated in Section 3, it is not very

robust to non-affine deformations, which relegates it to the disambiguation role for the340

more stable directions generated by kurtosis. In this section we experimentally study

this phenomenon.

We define the angular error ∆a as the absolute difference between the intrinsic

orientation on a reference figure and that obtained from a tilted view. Fig. 12 shows
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the mean angular errors for increasing tilt angles measured on the illustrative set of345

shapes in Fig. 7.
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Figure 12: Stability of orientation for the alphanumeric shapes as measured by ∆a. The ordinate of each

blue dot is the mean angular error of a figure at the given tilt angle for 12 regularly spaced tilt directions

(FOV = 40◦). Top row: orientation based on the α angle of ||S||. Bottom row: based on θ1 angle of K1.

Note that the tilt angles in the bottom row for kurtosis cover a much wider range. In the top row we can also

observe the dependence of ∆a on ||S||. In the bottom row the abscissa is just the position of the image in

the set.

We observe that the aggregated skew-based angle α is very sensitive to tilt: figures

with small ||S|| have high errors even for small angles, and the more asymmetric fig-

ures, with ||S|| > 0.1, have mean errors > 10o for tilt = 20o. In contrast, the minima

of kurtosis have significantly lower angular errors at higher tilt angles.350

5.2. Shape recognition

In this section we evaluate the quality of the SK signature for shape recognition

using invariant features and canonicalization. For this experiment we use the set of offi-

cial traffic plate Spanish symbols, comprised by 32 capital letters and digits depicted in

Fig. 13. Only one instance of the affine equivalent shapes O0 and 69 are included; I is355

also removed because it is nearly degenerate in this font and requires special treatment.
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Figure 13: Official Spanish traffic plate symbols and their canonical versions.

This small dataset is nevertheless not easy to deal with because of the small differ-

ences between some pairs of shapes when transformed to the common canonical frame.

Fig. 14 shows all pairwise Hausdorff distances for an image resolution of 100 × 100

pixels including six standard deviations. The most similar symbol pairs are the follow-360

ing:

8B 4.38, NZ 4.39, 2Z 5.00, DO 5.00, 3E 5.10, 5S 5.10, 68 5.66
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Figure 14: Pairwise Hausdorff distances in the canonical frame for the traffic plate dataset.

We use a single frontal prototype for each class, extracted from the low resolution

image shown in Fig. 13. The test samples are a set of 12 synthetic perspective views for
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each model (obtained as in Fig. 5) with increasingly difficult tilt angles (15◦, 30◦, 45◦,365

and 60◦) for an effective FOV of 30◦. This corresponds to a relatively short distance

to the camera, which may produce strong perspective distortion (the full FOV of the

standard webcams and cameras found in mobile devices is usually not much larger than

60◦).

We have studied recognition methods based on the following attribute vectors and370

similarity functions:

1. ‘I-Fourier’: Rotation invariant Fourier contour descriptor (10 lowest frequencies)

of the whitened shape. Used as baseline comparison.

2. ‘I-SK’: Simple rotation invariant feature vector extracted from the SK signature

(
Kmin +Kmax

2
, r, Smax, s,

t

r
,
g

r

)
, (20)

where g is the ‘prominence’ of the second local minimum of K (Fig. 2).375

3. ‘C-XOR’: Total area of the symmetric difference of canonical images.

4. ‘C-Hausdorff’: Hausdorff distance of canonical images. The Hausdorff distance

is efficiently computed from a precomputed distance transform [47] of the canon-

ical shape.

In all cases we classify by minimum distance to the single model and reject the380

classification if it exceeds a given threshold. Methods 1-2 use Euclidean distance. In

methods 3-4 we compare all canonical candidate pairs (1, 2 or 4) and return the best

match. We have studied two strategies for selection of multiple canonical versions: a)

the recommended default thresholds shown in Fig. 9; and b) the most conservative

case, which always generates 4 canonical representatives for every shape. The exper-385

iments have been replicated to construct ROC curves showing the classification error

rate (relative to the size of the test set) for increasing rejection rates.

Fig. 15 shows the classification results of the faster selection strategy. For the test

set (32 models × 12 tilt orientations = 384 elements) it produces 574, 507, 524, and

483 canonical candidates (an average of ∼ 1.4 representatives per shape), and for the390

32 models it produces 47 candidates (∼ 1.5 per model), totaling ∼ 25K target-model

comparisons.
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Figure 15: Robustness to perspective distortions for the traffic plates dataset using efficient selection (the

errors of C-XOR and C-Hausdorff at 15o are 0% at all rejection levels). The dashed line indicates the

baseline performance of a random classifier.

These results confirm that the simple I-SK feature vector is reasonably accurate,

as expected from the variability of the curves shown in Fig. 7. In general, though,

rotation invariant distances like I-SK and Fourier are only appropriate for small tilt395

angles. They use exact affine invariant descriptors which discard information needed

for shape discrimination. In contrast, the alignment approach on the canonical frame is

significantly better, with Hausdorff distance outperforming symmetric difference.

Fig. 16 shows the results of the same experiment with the safest but slower selection

strategy. In this case we have an average of 1460 target canonical candidates (out of400

the 1536 = 4 × 384, as a few cases have only one local minimum of K), and 122

model canonical candidates (out of 128 = 4 × 32), requiring ∼178K target-model

comparisons. We obtain a small reduction in the error rates at the cost of more than
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7× computing time4. For low distortion levels the individual selection method can be

up to four times faster, as a safe alternative is taking one arbitrary canonical version405

for the models and all four for the observations. These gains would be even greater if

compared with the eight orientations considered in [46].

We conclude that the selection of a unique canonical model (or a minimum set of

candidates) based on the analysis of the SK signature is a significant improvement on

earlier methods based on fixed sets of multiple candidate orientations.410
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Figure 16: Error reduction using full selection (for tilt angles < 30◦ we obtain essentially perfect classifica-

tion).

5.3. Validity range of the weak perspective assumption

Nonlinear alignment, required for example for full perspective transformations or

deformable models, is based on iterative refinement. A good starting point is essential,

but it is equally important that a reduced set of possible model matchings be selected

to avoid the wasted optimization cost of eventually mismatched shapes. Hence the415

importance of an efficient and robust affine canonicalization.

As previously illustrated in Fig. 10, for small FOV (or equivalently large focal

length) the affine assumption may be valid even for large tilt angles. It is interesting

4Duplicate canonical models produced by symmetric shapes (e.g. HNSX8) are not removed in both

strategies. If this were done the absolute computing times would slightly decrease but the speedup would be

similar.
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to study the breaking point of the proposed method with respect to the effective field

of view of the image. Fig. 17 shows the error rate (at 0% rejection) of several classifi-420

cation methods in 30o and 45o tilted views, for increasing FOVs. Notably, Hausdorff

distance on the canonical frame remains below 3% error for FOVs below 30o in the

harder 45o tilted view case.

This wide operating range demonstrates that the method can be safely embedded

as a module for fast initialization from scratch in more advanced shape recognition425

systems.
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Figure 17: Graceful degradation of classification accuracy (traffic plate dataset) for increasing perspective

distortion at fixed tilt angles.

5.4. Canonical vs physical error alignment

In principle, shape similarity should be measured on the physical sensor frame,

since the abstract canonical frame does not have any meaningful metrics (Fig. 11).

This requires costly separate warping transformations of all models into the original430

target frame.

We have compared the classification accuracy of Hausdorff distance evaluated in

the canonical frame and in the observation frame. We have also studied an efficient

modification of Hausdorff distance described in Appendix III, which combines dis-

tances in the observation and model frames. Fig. 18 shows the ROC curves of the435

above character recognition problem for several tilt angles.
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Figure 18: Accuracy of Hausdorff distance in different reference frames. C: canonical frame, V: target input

frame, M: combined frames. For tilt angles < 30o the three methods get essentially perfect classification.

Perhaps surprisingly, no significant differences are observed between the three

methods. A possible explanation is that the pairwise alignment transformations are

a by-product of individual canonicalization, not optimized to reduce any error. This

may have a regularization effect that protects against overfitting. We conclude, then,440

that shape similarity can be safely evaluated in the abstract canonical frame but further

studies are required to determine the practical relevance of this issue.

5.5. Fast rejection of wrong matching candidates.

The experiments in Section 5.2 suggest that simple morphological features of the

SK signature (20) can be used to discard a large number of wrong matchings with-445

out the need of explicitly computing registration error. For this idea to be sound it is

essential that no false negatives be produced. Fig. 19 shows the joint distribution of

the I-SK distance and the Hausdorff distance in the canonical frame for all pairs of

synthetic perspective views of the traffic plate character dataset, generated at 30o FOV

and 30o tilt. Clearly, the I-SK distance provides a safe bound on Hausdorff distance.450

For example, if we decide to reject candidate matchings with a Hausdorff distance > 4

pixels, we must consider only models with I-SK distance < 0.7.
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Figure 19: Joint distribution of the I-SK distance and the Hausdorff distance (blue), and safe rejection thresh-

old (red).

5.6. Real shapes

We have tested the method on a plate recognition task with very low resolution real

input images. Fig. 20 shows a small 259 × 457 rectangular region cropped from a 13455

Mpixels photo taken with a consumer smartphone (focal length = 4.6mm). This region

includes only 0.9% of the original image area, so the plate characters appear extremely

pixelated. We use again the official symbol templates shown in Fig. 13.
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Figure 20: Bounding boxes of dark regions detected as potential plate symbols.

The upper row of Fig. 21 shows the connected components detected by fixed

thresholding (size-normalized). A closer view of the plate characters is shown in the460

middle row; their sizes vary from 10 × 31 to 13 × 35 squared pixels. The bottom

row shows one of the observations, its corresponding model, and a comparison of their

respective canonical forms at 100 × 100 resolution. The Hausdorff distance in the
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canonical frame in this case is 4 pixels.
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Figure 21: Top: detected regions; bottom-left: true targets; bottom-right: comparison of observed and model

images in the original and canonical frames.

The following table shows the labels predicted by the considered classification465

methods with several rejection thresholds:

ground truth: ? ? ? ? ? ? R Z H ? O 4 8 5 ? ? ?

I-SK d<0.3: ? ? W ? ? ? R Z H I 0 4 8 5 ? ? ?

C-XOR d<700: ? ? ? ? ? ? R Z H I O 4 8 5 ? ? ?

C-Hausdorff d<4: ? ? I ? ? ? ? Z H ? O 4 8 5 ? ? ?470

C-Hausdorff d<8: I ? I I A ? R Z H ? O 4 8 5 ? 1 ?

I-Fourier d <0.12: 1 P D 1 B ? R 8 H 1 I 4 I 2 B 4 1

The rotation-invariant Fourier descriptor of whitened shapes obtains very poor

results while I-SK, symmetric difference (C-XOR) and C-Hausdorff distance in the

canonical frame correctly identify all targets. The character R is not detected by Haus-475

dorff distance with a low threshold due to the noisy protuberance caused by the simple

gray level thresholding method employed (Fig. 22). With a lower rejection rate all true

characters are correctly classified but we also get several false positives. In a realistic

application most false positives can be easily removed by exploiting pose consistency

and plate grammar.480

The results are satisfactory for such low resolution images, as nothing was assumed

about location, size, orientation, or slant of the observed shapes.

5.7. Out-of-the-box preprocessing

Finally we have evaluated the canonicalization method as a generic preprocessing

step for statistical classification techniques. The goal is to get affine invariance for free,485
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Figure 22: Examples of shape alignment in the plate recognition experiment.

without the need of augmenting the training images with a large number of represen-

tative (real or synthetic) rotated, scaled, and tilted views. Specifically, we have studied

the results of our method as a direct replacement of the isotropic size-normalization and

centering preprocessing step in the MNIST handwritten digit benchmark [48]. We have

canonicalized the whole dataset and, for maximum simplicity, we use a very small εs490

to get just a single canonical version per digit (Fig. 23). This is risky, as certain digits

have some orientation ambiguity, but we let the classifier deal with this variability.

Figure 23: Samples of the canonicalized MNIST dataset

In a first experiment we have trained a full-covariance Gaussian classifier working

on the 40 principal components of the global population. This machine has a high ac-

curacy and speed relative to simplicity. For the original MNIST dataset we get 96.25%495
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accuracy almost instantaneously. For evaluation of the alternative canonical prepro-

cessing step we merge classes 6 and 9 as they are very similar to rotated versions of

each other, and the alignment transformation can be used later to distinguish them. In

these conditions we get 93.4% accuracy.

This can be improved using more expressive classifiers like Support Vector Ma-500

chines or Artificial Neural Networks, at the cost of longer training times. For example,

a deep convolutional network with two convolution layers of 32 and 64 filters and a

full connected layer with 1024 elements can be easily trained (using tensorflow or any

similar system running on a modern GPU) to get 97.0% accuracy on the ten classes

(98.2% if we merge 6 and 9), and the following confusion matrix:505

0 1 2 3 4 5 6 7 8 9

0 976 0 0 0 1 1 1 0 0 1

1 0 1125 1 0 2 0 0 7 0 0

2 3 1 1016 0 1 0 0 8 3 0

3 3 0 1 996 2 2 0 2 3 1

4 0 1 1 3 968 2 1 1 2 3

5 1 0 0 3 7 868 3 1 2 7

6 2 0 0 1 3 4 902 16 1 29

7 2 2 13 2 2 3 0 1004 0 0

8 1 0 2 5 4 0 2 0 958 2

9 4 1 0 0 7 14 80 1 12 890

The same network architecture working with the standard preprocessing step ob-

tains 99.2% accuracy. This small performance degradation is acceptable to provide

affine invariance, which is conveniently achieved by plugging a generic preprocessing

module. Fig. 24 shows a demonstration of digit classification in a real image.510

For comparison with a pure data-driven approach, we trained a Spatial Transformer

Network [31] to directly classifiy weak perspective views (30◦ tilt and 40◦ FOV) of the

handwritten characters. We augmented the MNIST dataset with 96 synthetic versions

of each sample, corresponding to 8 rotations × 12 tilt orientations. The 60 000 origi-

nal training samples were extended to 5 820 000 instances, occupying 17GB of single515

precision float numbers. We randomly selected 10 000 for testing from the 970 000

examples in the extended test set. The network architecture consists of an initial affine

transformer followed by two convolutional layers (with 32 filters of size 3 × 3, stride

2× 2, no maxpool) and two fully connected layers (with 1 024 and 10 elements). The

optimization method was Adam with learning rate 0.001 and 0.2 dropout rate. The520
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Figure 24: Classification results for a set of handwritten digits taken in a perspective view. The bottom rows

show the original and canonicalized shapes.

accuracy of the best result obtained after 36 epochs (∼ 4 hours of GPU time using

NVIDIA GeForce GTX 1080) was 0.967. Such long learning time and large storage

requirements clearly indicate that a purely empirical approach to normalization is not

competitive with the proposed closed-form canonicalization method.

5.8. Discussion525

The goal of these experiments is not to break any record for character recognition

but to study the stability, efficiency, and practical utility of the proposed canonicaliza-

tion method. It is also not possible to extract definitive conclusions from particular case

studies, as the relative advantages of the different methods depend on the peculiarities

of each problem. In any case, our experiments provide strong evidence that, for natu-530

ral images of rigid shapes, the proposed canonicalization method comfortably tolerates

perspective views of the target images occupying the equivalent to 30◦ FOV with tilt

angles up to 45◦. The breaking point can be roughly defined by the thumb rule TILT×

FOV > 1500 squared degree. For other kind of nonlinear deformations, such as those
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caused by handwriting, the method is useful to automatically achieve affine invariance535

in statistical classifiers.

In general no discrimination loss is introduced by the method in addition to that

produced by the possible increase of intrinsic class overlapping produced by the ex-

pansion of the domain to the whole affine group.

5.9. Reproducible research540

The code developed for this work is available online as an open source package,

together with several illustrative jupyter notebooks5.

6. Conclusions

In this paper we have presented an efficient and stable affine planar canonicaliza-

tion method based on the properties of the third and fourth-order whitened moments.545

Previous methods used iterative optimization, obtained multiple canonical solutions,

and did not fully exploit the rich geometric information that can be inferred from the

moments. Our method is based on the analysis of the joint curve of marginal skewness

and kurtosis for each direction (the so-called SK signature), which can be efficiently

obtained in closed form from the raw moments. This signature is very sensitive to550

anisotropy, and can be used to define a single canonical version of the figure. The main

contributions of this work are the following:

1. A closed-form algorithm for the relative extremes of the marginal momentsK(θ)

and S(θ), and for the average S. The orientation ambiguity of the multiple

extrema of K is resolved by the direction of S.555

2. A selection method of multiple canonical versions for weakly orientable shapes

based on simple morphological features of the SK signature. Using safe se-

lection parameters we obtain a significant speedup in registration time versus

considering all four minima of K. The SK descriptor can also be used to reject

wrong candidate matchings quickly.560

5http://dis.um.es/˜alberto/canonic.html
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3. A comprehensive set of experiments to evaluate the robustness of the method

to non-affine distortion caused by natural imaging conditions. The canonical

versions are stable and can be used for shape classification under perspective

views occupying the equivalent to 30o FOV with tilt angles up to 45o.

4. A study of the registration error quality in different reference frames. We have565

found that alignment in the canonical frame, the most efficient, is in practice as

good as the theoretically optimal error measured in the physical sensor frame.

We have also demonstrated that canonicalization is a general and practical pre-

processing step to achieve affine invariance in statistical pattern recognition. This is

in accordance with the design principle that machine learning should be dedicated to570

capture variability that cannot be explained by a theoretical model.

Future work includes the extension of this approach to canonicalization of 3D re-

gions, improved robustness to perspective distortion, automatic segmentation of noisy

regions with ill-defined boundaries, automatic parameter tuning, and extension to tex-

tured and colored images.575
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Appendix I: Whitened moments580

The raw moments of a raster image can be directly computed by contraction with

a precomputed auxiliary multidimensional array containing values xpyq . In principle,

we can obtain µpq by the same method from an intermediate whitened image. How-

ever, this method has several drawbacks: the required auxiliary warping is costly and

introduces some accuracy loss, and, in noisy scenes we must be careful not to distort585

noise distribution. It is therefore better to obtain µpq in closed form from mpq . Note

that some standard software packages like OpenCV usually compute normalized image

moments only up to order three and do not enforce the whitening condition µ11 = 0.

We assume that the image has been normalized to m00 = 1. The whitening trans-

formation can be expressed as590

x′ = ax+ by + e

y′ = cy + f
(21)

where
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σxx = m20 −m2
10, σyy = m02 −m2

01, σxy = m11 −m10m01,

a =

√
σyy

σxxσyy − σ2
xy

, b = −aσxy
σyy

, c =
1
√
σyy

,

e = −am10 − bm01, f = −cm01.

(22)

Therefore

µpq = ES{(ax+ by + e)p(cy + d)q}. (23)

This involves the product of a trinomial and a binomial expansion:

µpq =
∑

(i+j+k=p)

∑
(l+n=q)

(
p

i, j, k

)(
q

l, n

)
ES{(ax)i(by)j(e)k(cy)l(d)n}

=
∑

(i+j+k=p)

∑
(l+n=q)

(
p

i, j, k

)(
q

l, n

)
aibjekcldnmi,j+l.

(24)

The number of terms (p + 2)(p + 1)(q + 1)/2 grows fast6 but is not large for our

purposes (e.g. µ40 has 15 terms, µ31 has 20 terms, and µ22 has 18 terms), and of course595

negligible in comparison with the cost of image warping.

(In practice it is better to express the trinomial as two binomial steps, sharing five

auxiliary (e.g. centered) moments, so that the total number of terms for the third and

fourth order can be reduced from 132 to 105.)

Appendix II: Contour representation600

The raw moments can be efficiently obtained from the boundary of a planar figure

using Green’s Theorem:

mpq =

∫∫
S
xpyqdxdy =

1

2

∮
Z

[
xpyq+1

q + 1
dx− xp+1yq

p+ 1
dy

]
. (25)

Contours extracted from digital images are represented by sequences of points Z =

{z0, z1, . . . zn−1}, where zk = (xk, yk). For notational convenience we add a closing

6 (p + 1)(p + 2)/2 is the number of elements of the base of a Pascal pyramid of depth p, and q + 1 is

the number of elements of the Pascal triangle of depth q.
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vertex zn = z0. In a piecewise linear approximation, the segment from zk to zk+1 is605

parameterized as z(t) = zk+(zk+1−zk)t, where t ∈ (0, 1). Then the contour integral

for a raw moment mpq can be decomposed as

mpq =
1

2

n−1∑
k=0

∫ zk+1

zk

x(t)py(t)q+1

q + 1

dx

dt
dt− x(t)p+1y(t)q

p+ 1

dy

dt
dt =

n−1∑
k=0

Ck, (26)

where each segment contribution Ck can be expressed as

Ck =
ukPp,q+1(xk, uk, yk, vk)

2(q + 1)
− vkPp+1,q(xk, uk, yk, vk)

2(p+ 1)
(27)

in terms of

Pn,m(x, u, y, v) ≡
∫ 1

0

(x+ ut)n(y + vt)mdt =

=

n∑
j=0

m∑
k=0

(
n

j

)(
m

k

)
xjun−jykvm−k

n+m− j − k + 1
,

(28)

where uk = xk+1 − xk and vk = yk+1 − yk.610

Momentmpq contains (p+1)(q+2)+(p+2)(q+1) terms per node. For example,

m40 contains 16 terms, m31 contains 22 terms, and m22 contains 24 terms.

Appendix III: Modified Hausdorff distance

As shown in Fig. 11, the alignment error measured in the common canonical frame

suffers anisotropic deformations which may degrade classification accuracy. For some615

similarity functions it is possible to keep information about the original metrics so

that the ‘canonical’ error can be converted back to physical sensor units without the

need of any additional warping. For example, for shape similarity based on symmetric

difference we just need to correct the weight of the area elements using the constant

Jacobian of the affine canonicalization transformations.620

Hausdorff distance is more complex, as the distance transform of every model must

be evaluated in (or warped to) the input frame. This is costly for on-line classification

but a fast acceptable approximation can be achieved as follows. For every shape R

(model or target) we precompute the canonicalization transformation CR, the distance
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transform DR, the canonical shape CRR, and the warped distance CRDR (Fig. 25).625

(For binary regions a single warp is needed, as the original shape can be recovered from

the distance transform by thresholding.)
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Figure 25: Comparison of distance in the canonical frame DCRR, and the canonicalized original distance

CRDR.

Let T = C−1A CM the alignment transformation of model M to target A. By abuse

of notation, symbols A and M denote both the regions and the corresponding indica-

tor functions, and warping is expressed by juxtaposition. The operator � denotes the630

Hadamard product (element by element multiplication). With these conventions the

Hausdorff distance between TM and A can be written as

dH(A, TM) = max(max
x∈A

min
y∈TM

d(x, y), max
x∈TM

min
y∈A

d(x, y))

= max[A�DTM |TM �DA].

(29)

The block TM � DA can be evaluated in the canonical frame for every target-

model pair from precomputed information. DA is computed once and CADA is valid

to be checked against all the model set.635

max(TM �DA) = max(CATM � CADA) =

= max(CMM � CADA).
(30)

Unfortunately, A � DTM cannot be expressed as element-wise products of pre-

computed items. A costly specific warp and distance transform is needed for each

target A and model M . However, an efficient ‘symmetric’ variant of Hausdorff dis-

tance can be explored in which the block A�DTM is replaced by the analogous term

CAA� CMDM :640
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dH′(A,B) = max[CAA� CMDM |CMM � CADA]. (31)

Both parts have physical meaning: the right part of the distance is evaluated in

the original frame of the target image and the left part is evaluated in the frame of the

model. The distance transforms must be normalized to figure size (e.g., using λ1) for

a common measurement unit independent of image resolution.

For classification purposes our experiments do not show any conclusive difference645

with respect to the true distance. And, perhaps surprisingly, the Hausdorff distance

in the canonical frame is no worse than the distance measured in the physical sensor

frame.
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