Towards Use Case and Conceptual Models
through Business Modeling

J. Garcia Molina, M. José Ortin, Begofia Moros, Joaquin Nicolas, Ambrosio Toval

Software Engineering Research Grjupepartamento de Informatica y Sistemas
Facultad de Informéatica, Universidad de Murcia
Campus de Espinardo. C.P. 30071. Murcia, Spain
{Imolina, Mjortin, Bmoros, Jnicolas, Atoval}@um.es

Abstract. A guide to requirements modeling is presented in this paper, in which
use cases and the conceptual model are directly obtained from a business mode-
ling based on UML activity diagrams. After determining the business processes
of the organization, and describing their workflows by means of activity dia-
grams, use cases are elicited and structured starting from the activities of each
process, while the concepts of the conceptual model are obtained from the data
that flow between activities. Furthermore, business rules are identified and in-
cluded in a glossary, as part of the data and activities specification. One notable
aspect of our proposal is that use case and conceptual modeling are performed
at the same time, thus making the identification and specification of suitable use
cases easier. Both use case and conceptual modeling belong to the requirements
analysis phase, which is part of a complete process model on whose definition
we are currently working. This process is being experimented in a medium-
sized organism of a Regional Public Administration.

1 Introduction

Since UML [1] was adopted as the OMG standard language for modeling, a large
number of UML-based process models for object-oriented (OO) development have
been proposed. These approaches are usually use-case driven, and therefore capture
the functional system requirements as use cases, which provide the foundation for the
rest of the development process: iteration planning, analysis, design, and testing.

Nowadays, a lot of research concerning use cases can be found in the literature,
and there is an agreement on their usual misunderstanding and on the lack of precise
guides to properly organize them. In this sense, several approaches have been publi-
shed (cf. [3, 7, 8]) dealing with issues such as use case granularity, the level of detalil
in which use cases should be described, and the suitability of creating a use case
hierarchy.

Based on the OOrathree-model architecturfl3] and the IDEA method [2], we
are working on the definition of a UML-based process model for application in the
information systems domain. This process includes a business modeling phase, aimed

aooo-

1 Partially supported by the CICYT (Science and Technology Joint Committee), Spanish
Ministry of Education and Ministry of Industry, project MENHIR TIC97-0593-C05-02.

2 Member of RENOIR (European Requirements Engineering Network of Excellence).

at describing the business processes of the organization, and which then allows the
elicitation of the system use cases and the conceptual model in a simple, straightfor-
ward way. Inspired by the process view of the enterprise model of the three-model
architecture, we describe each business process by a UML activity diagram with
swimlanes. Next, we identify the system use cases from the activities, and the
concepts(domain classes) from data (the information objects that flow among the
activities).

In this paper, we describe an approach to business modeling, and how it can serve
as a basis for requirements analysis (conceptual and use cases models). This approach
is currently being experimented within the framework of a project which aims to
provide a specific process model, based on requirements, for the development of
information systems with intensive use of data. The scope of the research is the Re-
gional Information Systems and Telecommunications Office (RISTO), of the Ministry
of Finance (MF) in the Regional Government of Murcia (RGM)— Spain.

This paper is structured in the following way: some issues related to use cases are
presented in section 2; next, a summarized version of our approach can be found in
section 3; section 4 deals with business modeling, and our proposal for its realization;
the rules that govern the transition from the business model to the use case and the
conceptual models are presented in section 5; and finally, in section 6 we present our
conclusions.

2 Use Cases in Practice

Most of the process models currently proposed for UML are definatsexsase

driven A use case can be defined as a sequence of actions, including variations, that
the system can execute and that produce an observable result which has some value
for an actor that interacts with the system [1].

Although the success of use cases is usually justified by the simplicity and intui-
tiveness of the technique, several authors (cf. [3, 7, 8]) have pointed out difficulties in
discovering and specifying useful use cases, and finding consensus about how to
organize and manage them. These are the reasons why we believe that it is necessary
to establish a set of principles to guide the identification, description and organization
of use cases.

Some interesting discussions about use case management have been made by T.
Korson and A. Cockburn. Korson [7] claims that requirements (and therefore use
cases) have to be hierarchically organized, in order to be able to understand them,
reason about them, refine them and use them to validate the developed products. He
establishes a set of recommendations, including the following statements: i) each
level of use cases should conform to a complete set of requirements, i.e. each level
does not add any new requirements, but it refines those in the previous level; and ii)
the use case hierarchy should not be the result of a functional decomposition and it
should be developed in an iterative and incremental way.

Cockburn [3], on the other hand, uses the concegafto organize use cases
hierarchically. He basically distinguishetrategic goals(the business processes of
the organization) andser goals(the system functions). Strategic goals are traced to a
set of user goals, and, likewise, a user goal can be subsequently decomposed into a set

of user goals. Thus, the concepsafmmary goadrises, which corresponds to either a
composite user goal, or to a strategic goal.

Last but not least, another important issue is the allocation of use case modeling in
the process model. Use case modeling is usually conceived as a previous step to con-
ceptual modeling. However, Korson [8] claims that it is not possible to create ade-
guate and useful use cases (nhor correctly implement them) without understanding the
domain, and therefore, use case and conceptual modeling have to be two parallel
activities.

Usually, use cases are intuitively elicited from the system specification, an then the
entities of the conceptual model are elicited based on the use cases specification. In
the following sections, we present an approach to obtain the use cases and the con-
ceptual models from a business model in a systematic way. Inspired @Ottaen
Three Model Architecturfl2,13], business modeling is performed by means of UML
activity diagrams. After determining the business processes of the organization, and
describing their workflows by means of activity diagrams, use cases are elicited and
structured starting from the activities of each process, while the concepts of the con-
ceptual model are obtained from the data that flow between activities. Furthermore,
business rules are identified and included in a glossary, as part of the data and activi-
ties specification. One notable aspect of our proposal is that use case and conceptual
modeling are performed at the same time, thus making the identification and specifi-
cation of suitable use cases easier.

3 Our Proposal in Brief

Our approach can be summarized in the following steps, which are not performed
sequentially, but in an iterative and, at times, concurrent way:

1. The identifying and delimiting of thbusiness processasgithin the organization
under study, according to the enterprise stratggals A business use case de-
fined for each business process, arilisiness use case diagrasused to show
the context and the boundary of the enterprise.

2. The discovery of theolesinvolved in the business processes, and their description
in arole modelthat describes the interactions among the workers in the enterprise
during the execution of a business use case. These interactions are represented by
UML interaction diagrams (behavioral aspect) and a stereotyped class diagram
(structural aspect).

3. The modeling of thevorkflow of every business process by means of activity dia-
grams, thus showing the interaction among roles to achieve the goal. The business
rules that constrain the business processes are also elicited.

4. The extraction of theystem use casé®m the activities making up a business use
case (which are included in the corresponding activity diagram).

5. The establishing of theonceptual moddtom the dataififormation objectsin the
activity diagrams.

All the elements created during the modeling are specified in a glossary. The overall
process outlined before is shown in Fig. 1.

Business Modeling

Il

TBo [T

(]

|
|l |
P!
/

1
,' Role Diagram Sequence Diagram - --2>» Process Diagram /
'I ! ! foy
i i "
BUSINESS MODEL @ ey
: ,l '1
. 1 1
l\\ Requirements ! ! I Glossary
\ Analysis ' i
\ 1 1
\‘ /I ,’ ’A A
\ / ! . |
\ P /) | -
N S ; /!
% L--777 . Yids v’ |
P K
C . - /
= /
1—O k D%—D .
_— -~
N e — — = -
Conceptual Model

System Use Case Diagram

REQUIREMENTS MODEL
Fig. 1. Traceability relationships between Business and Requirements models

Moreover, use case are organized in two levels: firstly, each business process is asso-
ciated with abusiness use caswhich maps to the Cockburn’s strategic goals; se-
condly, from these business use cases, a collectimystém use casés defined,

once the activities involved in each business process have been considered.

4 Business Modeling

To achieve its goals, an enterprise organizes its activity through a set of business
processes. Each business process is characterized by a collection whidhtare
produced and manipulated by means of a collecticlasksin which certainagents

(for instance, workers or departments) participate accordingwiorkflow. In addi-

tion, these business processes are constrainbddiyess ruleswhich determine the

policies and structure of the information of the enterprise.
The purpose of business modeling is to describe every business process, specifying

the corresponding data, activities (tasks), roles (agents) and business rules. At this
stage, our purpose is to understand the activity of the organization related to the sys-
tem to build, considering “what” the system is supposed to do, instead of “how” it

will support its goals.
The first step of business modeling is to capture the business processes of the or-
ganization under study. The elicitation of an adequate set of business processes is a

crucial task, since it establishes the boundaries of the later modeling process.
Following the concept of strategic goal given by Cockburn [3], we capture the busi-
ness processes from the main goals of the enterprise. Firstly, we consider the strategic
goals of the organization. Since these objectives are extremely complex, they are
decomposed into a set of a few subgoals, which are more specific and which have to
be accomplished to achieve the strategic goal. These subgoals can be subsequently
divided into some more subgoals, and therefore a hierarchy of goals arises. In our
research, we have experienced that two (or a maximum of three) levels of decompo-
sition are enough. For every one of those subgoals we define a business process,
whose purpose is to achieve that goal. We represent every business process as a busi-
ness use case, which is initially specified by using a textual description.

We will use as running example the case study of a company that manufactures
products by demand (following jast in timescheme). The strategic goals of that
company might includ&atisfy a customer orddincrement sales by 25%r Improve
the manufacturing time by 15%hus, the goabatisfy an ordecan be divided in the
following subgoals:Register order Manufacture productStock managemerand
Generate orders to provider$hese are the subgoals that we use to discover the busi-
ness processes.

4.1 Role Identification in the Business Context

Once business use cases are identified, we must discover the agents that are involved
in their realization. Every agent plays a certain role when it collaborates with other
agents to carry out the activities making up that business use case. In fact, we identify
roles which are played by enterprise agents (including workers, departments, and
devices) or external agents (as customers or other systems). For the moment, we only
pay attention to those roles with which the organization interacts to carry out its busi-
ness use cases. In our example, we have two roles which are clearly external to the
organizationCustomerandProvider.

To have a general view of the collection of business processes of the organization,
we can create a business use case diagram, in which every business process is repre-
sented as a use case (see Fig. 2).

% <<initiator>>
Register order

Customer

OO

Manufacture product

0

Stock management

—A

Generate orders to providers Provider

0

Fig. 2. Business use case diagram forJdbst in TimeManufacturing System

The business use case diagram allows us to show the boundary and environment of
the organization under study. This is the reason why only the business actors that
correspond to external roles are shown in this diagram. In this way, the business use
cases only involving roles which are internal to the organization are not connected to
any actor. The business use case diagram shown in Fig. 2 is a UML use case diagram
that consists of business use cases and actors. The diagram also specifies that the
agentCustomerinitiates the realization of its related use case, Whilevider is an

actor that just participates in the associated use case.

4.2 Describing the Business Use Cases

The following step consists of describing in detail every business use case previously
identified. We will focus on one of the business use cases of our example, namely
Register Orderwhose description is shown in Fig. 3. This description can be easily
validated by the users.

1. A customer submits an order, which has to include the order date, the customer data and the desired
products. A clerk of the sales department might also introduce the order on request of a customer
who has placed their order by phone, or has sent it by fax or ordinary mail to the sales department of
the company.

2. The clerk revises the order (and completes it, if necessary), and begins its processing by sending it to
the catalog manager, who is in charge of its analysis.

3. The catalog manager analyses the viability of each product of the order separately:

« if the ordered product is in the catalog, its manufacturing is accepted.

« otherwise, it is considered as a special product, and the catalog manager studies its
manufacturing:

- ifitis viable, the manufacturing of the special product is accepted,;
- if itis not viable, the product is not going to be manufactured.

4. Once the whole order has been studied, the catalog manager...

« informs the sales department if every ordered product is accepted or rejected;

« in the case that all the products of an order have been accepted, a work order for every
product is created, starting from a manufacturing template (the standard one, if the product
was in the catalog, or a new one, specifically designed for the product, if it was not present in
the catalog). Every work order is sent to the manufacturing manager, and its launching is
considered pending.

5. The clerk informs the customer about the final result of the analysis of his or her order.

Fig. 3. Description of thdRegister Ordebusiness use case

Now we have to determine the internal agents that play a role in each business use
case. We have identified the roles that belong to the business environment and now,
we have to study the description of each business use case, and observe the complete
set of involved roles, both external as well as internal to the organization. For ins-
tance, the roles in the business use case exampl€wmtemer, Clerk, Catalog
managerandManufacturing managefwhere the last three are internal to the system).
The static (or structural) aspect of the collaboration among the roles to perform the
business process, can be representedrateadiagram in which each role (a stereo-
typed UML class) appears linked to the roles with which it can collaborate (see Fig.
4). Therefore, this diagram allows us to express the knowledge that some roles have
about the others, as well as the characteristics of the relationships between roles (such
as multiplicity). In addition, this diagram can serve to define some characteristics of

the identified roles, such as their attributes and responsibilities. Ortin and Garcia
Molina [11] discuss role modeling in UML in more detail.

«Role» «Role»
Customer Clerk

«Role» «Role»
Catalog Manufacturing
Manager Manager

Fig. 4. Role diagram for th®egister Ordebusiness process

Next, we createscenariosto show the behavioral aspect of the role collaboration.
Here, we use UML sequence diagrams (see Fig. 5), in which the objects denote the
instances of the roles that participate in the interaction.

: Customer : Clerk : Catalog manager : Manufacturing manager

L sendOrder() studyOrder()

* analyzeProductManufacturing()

planManufacturing()
informOrderAnalysis() U

rrrrr tOrder()

Fig. 5. Sequence diagram for tRegisterOrder business use case

In every business use case we must distinguish the basic path of the interaction (in our
example, request of an order that is finally accepted), and the existing alternative
paths (for instance, canceling or rejecting an order). To improve legibility, it is con-
venient to associate several scenarios to the same business use case, instead of in-
cluding all the possibilities in the same sequence.

The OOram three-model architecture [13] includes a business model represented
throughprocess viewdased on the standard IDEFO [5], showing the workflow per-
formed to obtain some goal of the organization, indicating the roles that are in charge
of each activity, and the data required and produced by each activity. We consider
these kind of diagrams very suitable for model business use cases, since they are very
expressive and simple, thus facilitating discussions with users. These diagrams can be
easily adapted to UML, by using activity diagrams with swimlanes. Thus, we use this
type of UML diagram, which we have callpdocess diagramdo show the workflow
that makes up the business use case in more detail.

A process diagram that includes the scenario of Fig. 5 is shown in Fig. 6. There
exists a swimlane for every role participating in the scenario, including the activities

performed by that role. The diagram also shows the data needed and produced by
each activity, as well as the synchronization required between different activities.
Data appear as objects that flow between activities and can have a state. For instance,
the activityPass ororder receives a proposed order and initiates its revision (see Fig.
6). We refer to these objectsinformation objects

: Customer : Clerk : Catalog manager : Manufacturing manager

< Fill in order y' r

\
\
0:Order L’ - \J

[reviewed]

I

|

I
\V2 | | :Special
: : product

Notify order rejection T 1

| |

! i \4
! i

| |
End K
\l/ nd kO ‘| :Manufacturing
0:Order Rl template

-

[rejected] .
L
Notify order acceptance
| |

V \4

0:Order i (Establish manufacturing

X \mar

[accepted] planning

\
\|/ End ok

O

Fig. 6. Process diagram for thegister Ordebusiness use case

r
‘Work order
[pending] [T 71

During the description of a business use case by means of a process diagram, it is
possible to find out an activity which is complex enough to be described in another
activity diagram. Thus, this new activity diagram will describe a subgoal in relation to

the goal related to the original business process. In this fashion, business processes
can be hierarchically organized.

4.3 Business Rules Specification

In an organization, both business processes and the data that they manage are cons-
trained by business rules. As Whitenack [14] states, business rules are seldom expli-
citly captured during product development, regardless of the fact that they are often
important constraints on system behavior. Because there is no well-defined frame-
work in which to plug rules, and because there is a variety of rules types that are not
well understood, rules are often ignored until the implementation phase.

With the aim of understanding the various types of rules that we have to take into
account in a requirement specification, we use the taxonomy described by Odell [9].
This classification is simple but comprehensive and it covers every kind of business
rule. Business rules are divided into two categories: constraint and derivation rules.

¢ Constraint rulesspecify policies or conditions that constrain the structure and
behavior of the objects. Moreover, these rules can be subdividedtimolus-
response rulegthey constrain the behavior and specify the conditions that must
hold to activate an operatiorperation constraints rule@hey specify conditions
that must be true before and after an operation is performedtaradural rules
(they specify constraints about object types and associations, and these rules must
always hold true).

« Derivation rulesspecify policies and conditions to infer or calculate facts from
other facts in the business.

According to this classification, we explicitly collect each type of rule in the business
model by means of the specification of the activities and information objects shown in
the process diagrams. These specifications are gathered in a glossary.

Each information object is described by a set of attributes and their integrity cons-
traints (if any exist). Therefore, we explicitly state structural and derivation rules. On
the other hand, the semantics of each activity is described bgutse(that is, the
previous activities)agent(who is the responsible for doing the activifyje andpost
conditions(stating what has to hold before and after the activity). The latter establish
the operation rules, whereas stimulus-response rules are represented in the source
part, where we express the order between the activities. Fig. 7 shows how the infor-
mation objectOrder and the activitied.aunch Manufacturingand Notify Order
Acceptanceould be specified.

Activity: Launch manufacturing
Source: Analyze suitability

Information Object: ~ Order
Attributes

Order code
Submission date
Maximum delivery date
Set of {Products}
Customer
Total price
Current state
Constraints
Order code uniquely identifies the order, and
has to be assigned automatically by the
system
Submission date has to be previous to the
Maximum delivery date.
An order must contain at least one product, but
there is no maximum number.
An order is always processed for one (and only
one) customer.
The total price is calculated starting from the
price of each product in the order.

Domain Class : -to be specified-

Agent : Catalog manager

Precondition : All ordered products are
viable and a manufacturing template
exists for all of them.

Postcondition : A work order for each
product has been created, and has been
sent to the Manufacturing manager for
planning.

Use Case: - to be specified-

Activity: _Notify Order Acceptance

Source : Analyze suitability

Agent: Clerk

Precondition : All ordered products are
viable and have been accepted.
Postcondition : The customer is informed
that his or her order has been accepted.
Order state is Accepted.

Use Case: - to be specified-

Fig. 7. Glossary: information objects (left) and activities (right)

The glossary will have a hypertext (cross-references) structure, in order to maintain
the traceability relationships from the business processes to the classes and use cases
that specify the functionality of the system. During the development life cycle,
suitable links will be established. For example, each activity will be connected to the
system use case where it is performed, and each information object will be linked to
its related domain class, as we will see in the next section.

5 Requirements Analysis: Use Case and Conceptual Models

Starting from the business model described in the previous section, it is possible to
obtain both the initial collection of system use cases and the earliest conceptual model
in a systematic and straightforward way. Next, we are going to describe separately
how to obtain each model.

The requirements which are elicited and specified in this phase will be included in
a Software Requirements Specification (SRS) document. We recommend the use of a
SRS standard template, such as the IEEE 830-1998.

5.1 Transition to the Initial System Use Case Model

We believe that the activities in a process diagram have the appropriate level of
granularity to be associated to a single system use case. In this manner, we create a
use case for each activity of a process diagram that will be supported by the software
system. Thus, the role performing the activity will be the primary actor of the use
case. Note that, according to the use case definition, not all the activities in a process
diagram will be considered as use cases, but only those which have some value for an
actor.

For instance, consider that tlkistomerrole could not fill in the order on their
own (through a web form, for example). Then, he or she would have to send all the
data by fax or by telephone or some other way, as the result of the aktivity
Order. As this activity would be performed outside the software system, neither the
Customerrole (since he or she will not interact with the software system) nor the
activity Fill in Order (see Fig. 6) would be created in the system use case diagram.
Fig. 8 shows theystem use cases diagrdor the business procefegister order
whose process diagram was illustrated in Fig. 6, with the consideration that all the
activities will be supported by software.

The use case diagram shown in Fig. 8 contains the architecturally most important
use cases. We have to remark that some use cases could not be directly obtained from
the process diagrams, but would be detected when the elicited use cases were des-
cribed, thus gaining more knowledge about the requirements to be supported. These
new use cases represent functions that the system must perform in order to achieve
the goal related to some existing system use case. For instance, in our running exam-
ple, toAnalyze suitabilityit is necessary to look up in the products catalog whether an
ordered product exists and so this catalog must be up to date. Thus, we would have to
add the use caddaintain product catalogAnother example of a new use case could
be Maintain manufacturing templates

Fill in order Analyze suitability/
Q Catalog manager

Pass on order Launch manufacturing

ol R

wotify order acceptance manufacturing planning Manufacturing manager

Clerk O

Notify order rejection

Fig. 8. Initial system use cases diagram

Moreover, the use cases could be organized into levels (two o three levels as maxi-
mum) according to the hierarchical decomposition proposed in the business modeling.

Each use case will be described by means of a template which can be filled in
starting from the description of the associated activity, which is specified in the glos-
sary as we saw before. We have chosen the template proposed by Coleman [4] be-
cause it combines simplicity and completeness, as shown in Fig. 9.

Use Case Launch manufacturing.

Description Work orders for every ordered product will be created, and will

be sent to the Manufacturing manager so as to be planned.

Actors Catalog manager.

Assumptions - All ordered products are viable.

- There exist manufacturing templates for all of them.

Steps 1. REPEAT

1.1. Obtain a product from the order.

1.2. Look for the manufacturing template of this product.
1.3. Create the work order.

1.4. Store the work order with pending state.

Variations -
Non-Functional --
Issues --

Fig. 9. Launch manufacturingse case description

Once we have described the use case, it will be linked to the related activity in the
glossary, with the aim of keeping traceability between business use cases and system
use cases.

Relationships between uses cases could also be found, siacluds if common
aspects to various use cases are foundeatehd to express an optional or alterna-
tive path in a use case. Nevertheless, we agree with the recommendations about not
overusing these relationships and not showing them in the use case diagrams.

In order to complete this phase, non-functional requirements should be stated. If
they are related to a specific use case, they will be specified in the proposed use case
template [4]. If they are global to the system, they will be gathered in a section of the
chosen SRS.

5.2 Transition to the Initial Conceptual Model

The information objects that flow between the activities of a business use case repre-
sent domain data and therefore they are a good base to create the initial conceptual
model. This conceptual model will include the concepts and their relationships, and
will be represented by a UML class diagram, where concepts are represented by
classes (domain clases).

Each information object in the glossary will become a concept. In the design phase,
this concept will become a class if the software system is going to manipulate that
information. From the specification of an information object in the process diagram,
we will obtain the definition of the concept, that is, its attributes, relationships with
other classes, and constraints. For example, from the specificat@ef shown in
Fig. 7, we could obtain i) the attributesde, submissionDate, maximumDeliveryDate,
totalPrice, stateii) the association€ustomer-OrdeiandOrder-Product and iii) the
constraints that could be expressed textually or by means of Okjedt Constraint
Languagg as {maximumDeliveryDate > submissionDhate

Furthermore, it should be noticed that when a conceptual model evolves to a class
diagram, responsibilities can be obtained from certain constraints already specified in
the glossary. For example, the Order class could have responsibilities such as
getProducts, calculateTotalPricealculateMaximumDeliveryDat®r changeState

In the same way as we connected the activities with the use cases in the glossary,
we will link each information object to the domain class that represents it in the sys-
tem. The class diagram depicting the first conceptual model for our running example
is shown in Fig. 10.

Special product Catalogued product | 1..* Catalog
Product 1 1 Manufacturing template
1.* 1
o based on 0.
Order 1 launches 0.* Work order

Customer

Fig. 10.Initial conceptual model from tHeegister Ordebusiness process

At this stage of the development, it is worth spending time on identifying the concepts
rather than the relationships between them. We should concentratehas toeknow
relationships. For example, from the glossary, we can state that arhasdter know

the related customer and the products being ordered (see Fig. 7).

Thus, some of the roles detected in the business model, and therefore specified in
the role model, could be included as a class in the conceptual model. This is the case
of the clasgCustomelin our example.

Starting from the business model, it is also possible to identify some classes whose
behavior depends on a rich set of reachable states. In this case, it could be of interest
to define a state machine for them, represented by means of astdidichart dia-
gram These classes are easily detected in the process diagrams, since they correspond
to information objects labeled with several states. In our running exa@pier
would be a candidate for building a state machine that shows the states of an order
(proposed, under_review, reviewed, accemadrejected and the events to change
from one state to another.

6 Conclusions

In this paper, we have presented an approach for business modeling and requirements
analysis, in which the use cases and the conceptual model are obtained in a straight-
forward using the business model as a starting point. Business modeling is centered
on the use of UML activity diagrams.

With this guide, the modeler has available a systematic way to identify and orga-
nize use cases, and to identify and define the classes of the conceptual model. The
business processes of the organization are identified from the goals proposed by
Cockburn [3], and they are described by means of a flow of activities represented by a
UML activity diagram. In this manner, system use cases are obtained from the activi-
ties of the business processes and they are organized into a hierarchy of levels, as
proposed by Korson [7].

The classes of the conceptual model are obtained from the information objects
flowing among the activities. We would like to highlight as an important feature of
our approach that use cases are modeled at the same time that the conceptual mode-
ling is done, in agreement with Korson [8], who states that this is crucial to get correct
use cases, since understanding the domain is necessary to write useful use cases.

During the business and requirements modeling, the activities specification and the
associated use cases, as well as the information objects and the corresponding domain
classes, are gathered in a single glossary, which allows us to keep traceability between
the different modeling artifacts.

In the Rational Unified Process (RUP) [6], defined by Rational for UML, business
modeling is also included as a step within the iterations making up the process model.
Jacobson et al. [6] present some steps that are similar to ours, but the hierarchical
decomposition of the highest-level use cases is not considered, nor is a clear guide to
discover the system use cases provided. Our approach to business modeling is a com-
plete guide as opposed to the general sketch presented there.

References

8.
9.

Booch, G., Rumbaugh, J., Jacobson, I.: The Unified Modeling Language User Guide.
Addison-Wesley (1999)

. Ceri, S., Fraternalli, P.: Designing Database Applications With Objects and Rules. The IDEA

Methodology. Addison-Wesley (1997)

. Cockburn, A.: Using Goal-Based Use Cases” JOOP vol. 10 no.7. (Nov/Dec 1997) 56-62
. Coleman, D.: A Use Case Template: Draft for discussion (1998)

http://www.bredemeyer.com/use_case.pdf

. Integration Definition for Function Modeling. Computer Systems Laboratory, National

Institute of Standards and Technology, FIPS Pub. 183. (December 1993)

. Jacobson, I., Booch, G. Rumbaugh, J.: The Unified Software Development Process.

Addison-Wesley Longman, Inc. (1999)

. Korson, T.: Misuse of Use Cases. (1998)

http://software-architects.com/publications/korson/korson9803om.htm.

Korson, T.: Constructing Useful Use Cases (1999)
http://software-architects.com/publications/korson/usecase3

Martin, J. Odell, J.J.: Object-Oriented Methods: A Foundation. Prentice Hall. (1997)

10. Ortin, M.J., Garcia Molina, J., Martinez, A., Pellicer, A.: Combining OOram and IDEA for

Information Systems Modeling. Technical Report TR-01-00. (December 1998)

11. Ortin, M.J., Garcia Molina, J.: Role-Based Modeling with UML. IV Jornadas de Ingenieria

del Software y Bases de Datos. Caceres, Spain (1999)

12. Reenskaug, T.: Working with Objects: the OOram Software Engineering Method. Addison-

Wesley / Manning Publications (1996)

13. Reenskaug, T.: Working with Objects: a Three-Model Architecture for the Analysis of

Information Systems. JOOP vol. 10 no. 2 (May 1997) 22-30

14. Whitenack, B.: RAPPeL: A Requirements Analysis Process Pattern Language for Object-

Oriented Development. In: Coplien, J.O., Schmidt, D.C. (eds.): Pattern Languages of Pro-
gram Design. Addison-Wesley (1995) 259-291

