
A parallel MMSE-OSIC algorithm on
heterogeneous networks

F.J. Martinez Zaldı́var1, A.M. Vidal Maciá2 y Domingo Giménez3

Resumen—This paper describes a pipelined parallel algorithm
for the Ordered Successive Interference Cancellation (OSIC) de-
coding procedure proposed in V-BLAST wireless MIMO systems.
It is based on an algorithm that solves the Recursive Least Squares
(RLS) problem, and is derived from a block version of the square
root Kalman Filter algorithm. It has been parallelized in a pipeli-
ned way getting a good efficiency and scalability in a heterogeneous
network of computers. Although the optimum load balancing for
this algorithm is dynamic, we derive a static load balancing scheme
with good performance.

Palabras clave—OSIC, MIMO, V-BLAST, pipeline, Kalman.

I. INTRODUCTION

MULTIPLE Input Multiple Output (MIMO) systems
have been extensively studied in the context of

wireless communications in the recent years. The orig-
inal proposal by Foschini, [1], known as BLAST (Bell
Labs Layered Space-Time), has generated a family of ar-
chitectures that uses multiple antenna arrays to transmit
and receive information with the target of increasing the
capacity and reliability of the links. Some of these archi-
tectures are D-BLAST (Diagonal BLAST), [2], [1] and
Turbo-BLAST, [3], with high complexity implementa-
tions, and V-BLAST (Vertical BLAST) with more practi-
cal complexity at expense of diversity, [4]. We focus our
interest in the suboptimal but more practical V-BLAST
family where nearly optimal decoders as Sphere Decod-
ing can be used, [5], or linear decoders as Zero Forcing,
MMSE and its ordered version OSIC (Ordered Succes-
sive Interference Cancellation), [6], [7], with some appli-
cations like multicarrier systems (OFDM used in DVB-
T —Digital Video Broadcasting-Terrestrial—), [8] where
the dimension of the problem may be about several thou-
sands.

This paper describes the parallelization of the algo-
rithm that solves the OSIC decoding problem for a het-
erogeneous networks of computers. The parallel algo-
rithm can be used with the basic ideas of [6] and the im-
provement of [7].

II. OSIC DECODING PROCEDURE

In a basic approach, we need to solve the typical per-
turbed system y = Hx + v, where the known full rank
matrix H ∈ C

m×n, m ≥ n, represents the channel ma-
trix and any manipulation of the symbols before transmis-
sion, x is a vector whose components belong to a discrete
symbol set, and v is the process noise. The use of MMSE

1Dpto. de Comunicaciones, Univ. Politécnica de Valencia, e-mail:
fjmartin@dcom.upv.es

2Dpto. de Sistemas Informáticos y Computación, Univ. Politécnica
de Valencia, e-mail: avidal@dsic.upv.es

3Dpto. de Informática y Sistemas, Univ. de Murcia, e-mail:
domingo@dif.um.es

(Minimum Mean Square Error estimation) yields

x̂ =

��
H√
αIn

�† �
y

0

��

=
�
H†

αy
�
, (1)

where �·� denotes the mapping or slicing of the re-
sult in the symbol set, H†

α denotes the first m columns
of the pseudoinverse of the augmented channel matrix
(H∗,

√
αIn)

∗
, α−1 may be thought as a signal to noise

ratio, and the asterisk superscript (·)∗ denotes the com-
plex conjugate. In OSIC, the signal components xi,
i = 1, . . . n, are decoded from the strongest (with highest
signal to noise ratio) to the weakest, cancelling the con-
tribution of the decoded signal component to the received
signal and then repeating the process with the remainder
signal components. Let P be the error estimation covari-
ance matrix (symmetric positive definite)

P = E{(x− x̂)(x− x̂)∗} = (αIn +H∗H)−1.

We can verify that

P =

�
H√
αIn

�†
��

H√
αIn

�†
�∗

. (2)

Later, we will need to factorize P as the product of their
square roots factors. This factorization is not unique but
it is advantageous that these factors have triangular struc-
ture. Let P = P1/2P∗/2 be the Cholesky factorization
of P, then the square root factor P1/2 is a lower tri-
angular matrix. Let Pjj be Pjj = min{diag(P)} (so
the jth row of P1/2 has the minimum euclidean norm)
then x̂j is the component of x̂ with the highest signal to

noise ratio that can be decoded as x̂j =
�
H

†
α,jy

�
, where

H
†
α,j is the jth row of H†

α (the jth nulling vector). If
H = (h1,h2, . . . ,hn), the contribution of the estimated
xj in the received signal is cancelled as y� = y − hj x̂j .

The procedure should be repeated for the deflated
channel matrix H�, which is obtained by deleting the jth

column of H. It implies that we should recompute the
pseudoinverse of the augmented deflated channel matrix
and then select the new strongest component signal, ap-
plying the same calculations. The computation of the
iteratively augmented deflated channel matrix pseudoin-
verses until all the signal components are decoded, rep-
resents a high computational cost. This recomputation is
avoided in [6]. Let us compute the next QL factorization:

�
H√
αIn

�

= QL ⇒

�
H√
αIn

�†

= L−1Q∗, (3)

where L ∈ C
n×n is a lower triangular matrix, and the

columns of Q ∈ C
(m+n)×n are orthogonal. Let us define

308 XIX Jornadas de Paralelismo

Actas de las XIX Jornadas de Paralelismo, pp. 308-313, 2008. ISBN: 978-84-8021-676-0

Q = (Q∗
α,Q

∗
β)

∗, where Qα = (qα,1,qα,2, . . .qα,n) are
the first m rows of Q, then we can identify from (2) and
(3) that L = P−1/2. Hence:

P1/2 =

p
1/2
1 0 . . . 0

× p
1/2
2 . . . 0

...
...

. . .
...

× × . . . p
1/2
n

P−1/2 = L =

�
p
−1/2
1 0

a L�

�

, (4)

verifying that
H†

α = P1/2Q∗
α. (5)

Let us suppose that the first row of the lower triangular
matrix P1/2 is the least euclidean norm row (otherwise
we can get it using a permutation matrix Π and a uni-
tary transformation Σ in ΠH†

α = ΠP1/2ΣΣ∗Q∗
α main-

taining the lower triangular structure in ΠP1/2Σ); then
the first diagonal entry of P = P1/2P∗/2 would be the
smallest one. Hence the first component to decode (the
strongest one) would be x̂1, so the nulling vector H†

α,1

can be got from (5) as H†
α,1 = p

1/2
1 q∗

α,1 due to the lower

triangular structure of P1/2, so x̂1 =
�
H

†
α,1y

(n)
�
, where

y(n) = y. Now we must cancel the contribution of x̂1 to
the received signal as y(n−1) = y(n) − h1x̂1 and repeat
the process with the new strongest signal component, the
cancelled interference received signal y(n−1) and the de-
flated channel matrix H� = (h2, . . . ,hn), and so on. The
deflated channel matrix H� has a new error covariance
matrix P� = P1/2�P∗/2� that can be obtained directly
from the last n− 1 columns and rows of P1/2. From (3)
and (4):
�

H√
αIn

�

=

� �
h1 h2 . . . hn

�

√
αIn

�

= QL =

�
Qα

Qβ

��
p
−1/2
1 0

a L�

�

,

we get

�
h1 h2 . . . hn

�
= Qα

�
p
−1/2
i 0

a L�

�

= (qα,1,qα,2, . . .qα,n)

�
p
−1/2
i 0

a L�

�

�
h2 . . . hn

�
= (qα,2, . . .qα,n)L

�

�
H�

√
αIn−1

�

=

�
Q�

α

Q�
β

�

L�.

Then we can get the new strongest component signal
from this new P1/2� = L

�−1 matrix. The new Q�
α can

be obtained directly from the last n − 1 columns of Qα

and Q�
β from the last n− 1 rows and columns of Qβ .

Therefore, only P1/2 and Qα are necessary to solve
the OSIC problem. In [6], P1/2 and Qα are computed
solving x̂ =

�
H†

αy
�
=

�
P1/2Q∗

αy
�

as a Recursive Least
Squares (RLS) problem in a special way. A subtle im-
provement in the execution time is reported in [7] where

the nulling vector is got by means P1/2 and H. Anyway,
in both cases we need the P1/2 matrix. We will deve-
lope the parallel algorithm for the ideas reported in [6]
because the results are extrapolable to the implementa-
tion proposed in [7]. In order to simplify the description
of the algorithm we will avoid the details of the permu-
tations due to the signal to noise ratio orderings and will
focus our attention on the parallelization of the process
for obtaining P1/2 and Qα.

A. The square root Kalman Filter for OSIC

From (5), Qα = H†∗
α P−∗/2. This matrix is propagated

along the iterations of the square root Kalman Filter de-
vised initially to solve a Recursive Least Squares (RLS)
problem. Next we reproduce a block version of the algo-
rithm for OSIC, reported in [6] that will be named SRKF-
OSIC.

Input: H = (H∗
0,H

∗
1, . . .)

∗
, P

1/2
(0) = 1√

α
In,Qα,(0) = 0

Output: Qα = Qα,(m/q), P
1/2 = P

1/2
(m/q)

for i = 0, . . . ,m/q − 1 do
Calculate Θ(i) and applicate in such a way that:

E(i)Θ(i) =

Iq HiP
1/2
(i)

0 P
1/2
(i)

−Γ(i+1) Qα,(i)

Θ(i)

=

R
1/2
e,(i) 0

Kp,(i) P
1/2
(i+1)

Z(i) Qα,(i+1)

 = F(i)

end for

where Z(i) = −
�
Γ∗
(i+1) −HiH

†
α,(i+1)

�∗

R
−∗/2
e,(i) ; the

value of q is the number of consecutive rows of H

processed in a block, so Hi ∈ C
q×n is the ith block

of consecutive rows of H; the iteration index subscript
enclosed between parenthesis denotes that the variable
is updated iteratively: Qα and P1/2 are the values

Qα,(i+1) and P
1/2
(i+1) in the last iteration i = m/q − 1;

Γ(i+1) =
�
0T
iq×q, Iq,0

T
(m−q(i+1))×q

�T

∈ R
m×q; Re,(i)

and Kp,(i) are variables of the Kalman Filter whose

meaning are described in [9], and H
†
α,(i+1) appears im-

plicitly in Z(i) (this submatrix will not be propagated
along the iterations as can be observed from the algo-
rithm).

We can use a QR factorization in order to get the re-
quired zeroes but we can get a lower computational cost

if we propagate the matrix P
1/2
(i) maintaining a lower tri-

angular structure along the iterations, so the zeros must
be get in a selective way using Givens rotations. We can
exploit the fact that the structure of Γ(i+1) depends on the
iteration index i and Qα,(0) = 0, in order to minimize the
arithmetic cost of the unitary matrix application.

A.1 Arithmetic costs

The costs of one iteration are a matrix multiplication

HiP
1/2
(i) and the application of a sequence of Givens ro-

Castellón, Septiembre 2008 309

tations Θ(i), exploiting and maintaining the triangular

structure of P
1/2
(i) along the iterations. Let wTRMM(q, n)

denote the cost of the HiP
1/2
(i) matrix multiplication,

where q and n are the dimensions of the result, and
wROT(z), the cost of applying a Givens rotation to a pair
of vectors of z components. The cost can be approxi-
mated as:

Wseq,i(n, q) = wTRMM(q, n)+
�

n

q�

r=1

wROT(r) + q
n�

c=1

wROT(c) + qnwROT([i+ 1]q)

�

flops, where r, c and i denotes the index of rows,
columns and iterations respectively. If we assume that
wTRMM(q, n) = qn2 flops and wROT(z) = 6z flops, [10],
the cost of the ith iteration is

Wseq,i(n, q) = (4n+ 3q + 6+ 6q[i+ 1])qn flops, (6)

and the cost of the total iterations is

Wseq(m,n, q) =

m/q−1�

i=0

Wseq,i(n, q) ≈ 4n2m+ 3nm2.

III. PARALLEL ALGORITHM

A. Data decomposition

For clarity reasons let us suppose as an example that
we have p = 3 processors: P0, P1 and P2. A matrix en-
closed within square brackets with a processor subscript
will denote that part of the matrix belongs to such pro-
cessor. If it is enclosed within parenthesis then it denotes
that the entire matrix is in such processor.

Let (D(i) |C(i)) denote the generic structure of E(i)

and F(i)

E(i) =

Iq HiP
1/2
(i)

0 P
1/2
(i)

−Γ(i+1) Qα,(i)

 ⇒ (D(i)|C(i))

F(i) =

R
1/2
e,(i) 0

Kp,(i) P
1/2
(i+1)

Z(i) Qα,(i+1)

 ⇒ (D(i)|C(i)).

We will observe later that D(i) ∈ C
(q+n+m)×q will be

manipulated by all the processors in a pipelined way so
we will denote it as (D(i))Pj

, where Pj represents the
processors that processes it. D(i) is made up by a lower
triangular matrix L(i) ∈ C

q×q and two general matrices
M(i) ∈ C

n×q and N(i) ∈ C
m×q . M(i) ∈ C

n×q will
be divided by rows in p groups denoting a left superscript
the amount of rows of the grouping:

�
D(i)

�
Pj

=

L(i)

M(i)

N(i)

 =

L(i)
n2 [M(i)]
n1 [M(i)]
n0 [M(i)]
N(i)

,

with
�p−1

j=0 nj = n. The nonzero rows of N(i) will de-
pend on the iteration index i. Initially:

�
D(i)

�
P0

=

L(i)

M(i)

N(i)

 =

Iq
0

−Γ(i+1)

 .

And at the end of the process and as consequence of the
unitary matrix application:

�
D(i)

�
Pp−1

=

L(i)

M(i)

N(i)

 =

R
1/2
e,(i)

Kp,(i)

Z(i)

 .

The last n columns of E(i) and F(i) will be the inital and
final value respectively of C(i). This submatrix will be
distributed by columns among the processors. Every one
will own nj consecutive columns with

�p−1
j=0 nj = n.

c0j will denote the index of the first of them assigned to
the Pj processor. We can verify that

c0j = 1 +

p−1�

k=j+1

nk = n+ 1−

p−1�

k=j

nk. (7)

This data distribution of C(i) will not change in the algo-
rithm execution (except with an adaptive load balancing).
Then

E(i) =
�
D(i) C(i)

�

=
��

D(i)

�
P0

�
C(i)

�
P2

�
C(i)

�
P1

�
C(i)

�
P0

�
.

B. Processors tasks

When the Pj processor gets zeroes in [HP
1/2
(i)]Pj

for the ith iteration, we can observe that [P
1/2
(i)]Pj

and

[Qα,(i)]Pj
are converted in [P

1/2
(i+1)]Pj

and [Qα,(i+1)]Pj

respectively, so if Pj has got Hi+1, it can get
�
C(i+1)

�
Pj

and begin with the process for the (i+1)th iteration. The
pipelined behaviour of the algorithm is based on this fact.

The first step in the pipelined parallel algorithm is (an
apostrophe will denote the updating of the variable):

E�
(i) = E(i)Θi,P0

=

=
��

D(i)

�
P0

�
C(i)

�
P2

�
C(i)

�
P1

�
C(i)

�
P0

�
Θi,P0

=

Iq
n2 [0]
n1 [0]
n0 [0]

−Γ(i+1)

P0

�
C(i)

�

P2

�
C(i)

�

P1

�
C(i)

�

P0

Θi,P0

=

L(i)
n2 [0]
n1 [0]

n0 [M(i)]
N(i)

P0

�
C(i)

�

P2

�
C(i)

�

P1

0

P
1/2
(i+1)

Qα,(i+1)

P0

,

where Θi,P0
is a unitary transformation calculated and

applied by P0 in order to get zeros in [HiP
1/2]P0

. Now
P0 must transfer the nonzero part of (D(i))P0

to P1: L(i)

(a lower triangular matrix, q(q+1)/2 elements),
n0 [M(i)]

(n0q elements) and the nonzero part of N(i) ((i + 1)q
elements). If P0 has received Hi+1, it has all necessary
data to make up

�
C(i+1)

�
P0

and start again.

Now in P1:

E��

(i) = E�

(i)Θi,P1
=

L(i)
n2 [0]
n1 [0]

n0 [M(i)]
N(i)

P1

�
C(i)

�

P2

�
C(i)

�

P1

310 XIX Jornadas de Paralelismo

0

P
1/2
(i+1)

Qα,(i+1)

P0

Θi,P1

=

L�

(i)
n2 (0)

n1 [M(i)]
n0 [M(i)]

�

N�

(i)

P1

�
C(i)

�

P2

0

P
1/2
(i+1)

Qα,(i+1)

P1

0

P
1/2
(i+1)

Qα,(i+1)

P0

.

The same comments are applicable to P1. Now in P2:

E���

(i) = E��

(i)Θi,P2
=

L�

(i)
n2 [0]

n1 [M(i)]
n0 [M(i)]

�

N�

(i)

P2

�
C(i)

�

P2

0

P
1/2
(i+1)

Qα,(i+1)

P1

0

P
1/2
(i+1)

Qα,(i+1)

P0

Θi,P2
.

Hence,

E���

(i) =

L��

(i)
n2 [M(i)]
n1 [M(i)]

�

n0 [M(i)]
��

N��

(i)

P2

0

P
1/2
(i+1)

Qα,(i+1)

P2

0

P
1/2
(i+1)

Qα,(i+1)

P1

0

P
1/2
(i+1)

Qα,(i+1)

P0

=

R
1/2
e,i 0

Kp,i P
1/2
(i+1)

Z Qα,(i+1)

 = Fi.

Figure 1 depicts the behavior of the parallel algorithm.

C. Arithmetic cost

The arithmetic cost in the ith iteration in the Pj proces-
sor is due to:

• The matrix multiplication
�
HiP

1/2
(i)

�

Pj

can be done

taking advantage of the
�
P

1/2
(i)

�

Pj

matrix structure:

wTRMM(q, nj) + wGEMM(q, n− c0j − nj + 1, nj)

+wADD(q, nj).

Let us suppose that the cost of the two general a× b
and b× c matrix multiplication is wGEMM(a, b, c) =
a(2b− 1)c flops, and the cost of two a× b matrices
addition is wADD(a, b) = ab flops. Hence, the cost
is:

(2n− nj − 2c0j + 2)qnj flops. (8)

Fig. 1. SRKF-OSIC pipelined parallel algorithm.

• The zeroes in the nj columns of [HiP
1/2
(i)]Pj

are got
column-wise and from right to left. Let r = 1, . . . , q
denote the row index in the c = nj , . . . , 1 column

of [HiP
1/2
(i)]Pj

. Then the Givens rotation must be
applied to three pair of subvectors:
– The row interval [r : q] of the rth column of

(L(i))Pj
and the cth column of [HiP

1/2
(i)]Pj

.

– The row interval [c0j + c− 1 : n] of the rth column

of (M(i))Pj
and the cth column of [P

1/2
(i)]Pj

– The row interval [1 : [i + 1]q] of the rth column of
(N(i))Pj

and the cth column of [Qα,(i)]Pj
.

so the cost of the ith iteration is:

nj�

c=1

q�

r=1

wROT(q−r+1)+

nj�

c=1

q�

r=1

wROT(n−c0j−c+2)

+

nj�

c=1

q�

r=1

wROT([i+ 1]q) =

(3q+6n−6c0j+12−3nj+6[i+1]q)qnj flops. (9)

So the total cost of the ith iteration is (8) plus (9):

WPj ,i(n, q) = (3q+8n−8c0j −4nj+14+6[i+1]q)qnj

(10)
flops, and the total arithmetic time in the Pj procesor is

WPj
(m,n, q) =

m/q−1�

i=0

WPj ,i(n, q) =

m/q−1�

i=0

�
3q + 8n− 8c0j − 4nj + 14 + 6[i+ 1]q

�
qnj

flops. We can verify that the parallelization arithmetic
overhead is null:

Castellón, Septiembre 2008 311

Wseq(m,n, q) =

p−1�

j=0

WPj
(m,n, q).

D. Load balancing

The perfect load balancing is got when all processors
need the same time in processing its assigned iteration
job due to the communication synchronization. We need
to determine the nj value for every Pj in order to bal-
ance the load taking into account the different computing
power in a heterogeneous network.

Each processor is processing a different iteration at the
same time: if Pj is processing the ith iteration, Pk is pro-
cessing the (i+ j − k)th iteration. So we must achieve

WPj ,i(n, q)twj
= WPk,i+j−k(n, q)twk

, (11)

where twj
and twk

are the time per flop in Pj and Pk

respectively.
It is difficult or impossible to get the nj and nk val-

ues, ∀j �= k and ∀i, that verify (11) with the constraint�p−1
j=0 nj = n. Hence, we will relax the condition (11)

with a simpler target: WPj ,i(n, q)twj
= WPk,i(n, q)twk

.
The nj , ∀j values can be got solving the next equation:

WPj ,i(n, q)twj
=

Wseq,i(n, q)twseq

Smax(p, n, q)
, ∀ 0 ≤ j ≤ p− 1,

(12)
where Smax(p, n, q) is the maximum speedup attainable
in the parallel system.

The maximum speedup in the heterogeneous network
depends on the time per flop twj

of every processor. Let
us define sj as the normalized relative speed of the pro-
cessors (dimensionless):

sj = 1/

p−1�

r=0

twj

twr

. (13)

We can verify that
�p−1

j=0 sj = 1, and twj
sj = twk

sk,
and if Pj is u times faster than Pk, then sj = usk.

Let us suppose that the sequential algorithm is run in
the fastest processor of the heterogeneous network: Pf ,
0 ≤ f ≤ p− 1, then twseq

= twf
. The maximum speedup

can be obtained from (12) when a perfect load balancing
is got (WPj ,i(n, q)twj

= WPk,i(n, q)twk
, ∀j �= k) and

there is no parallel arithmetic overhead (Wseq,i(n, q) =
�p−1

j=0 WPj ,i(n, q)). Let us solve Smax(p, n, q) from (12)
with j = f :

Smax(p, n, q) =
Wseq,i(n, q)twf

WPf ,i(n, q)twf

=
1

sf
. (14)

Hence the maximum speedup is the inverse of the fastest
processor normalized relative speed.

We can observe that using (10) and (6) in (12) the nj

values depend on the i iteration value, so the load bal-
ancing scheme is not static. A possible solution in or-
der to get a suboptimum but static load balancing scheme
is to get it for the worst case, where the load and the
unbalancing can be higher: i = m/q − 1. Hence, we
will begin getting np−1 with c0p−1

= 1, then np−2 with
c0p−2

= c0p−1
+ np−1 and so on.

E. Communication analysis

The data that Pj must transfer to Pj+1 for its ith it-
eration (see figure 1) is the L(i) matrix (12q(q + 1) ele-

ments), the nonzero part of M(i) (q
�j

k=0 nk elements),
the nonzero part of N(i) ([i + 1]q elements), and the Hi

matrix (qn elements). Let us suppose that a linear model
fits the behavior of the communication time from Pj to
Pj+1, then this time for the ith iteration can be expressed
as:

TC,Pj ,i(n, q) =

β + τ

�

qn+
1

2
q(q + 1) + q

j�

k=0

nk + [i+ 1]q

�

,

where β is the communication settling time and τ is the
time to transfer one element.

We can consider two communication network models:
one in which the transfer between adjacent processor can
be made simultaneously (model A) and another in which
these transfers must be done serially (model B).

For the model A, the commnication time for the ith it-
eration is:

T
(A)
C,i (n, q, p) = max

j=0,...p−2
{TC,Pj ,i(n, q)}.

If we ignore the pipeline filling or emptying time, the to-
tal communication time is:

T
(A)
C (m,n, q, p) =

m/q−1�

i=0

T
(A)
C,i (n, q, p)

= Θ (mn) +Θ

�
m2

q

�

. (15)

For the model B:

T
(B)
C,i (n, q, p) =

p−2�

j=0

TC,Pj ,i(n, q).

And for all the iterations:

T
(B)
C (m,n, q, p) = Θ (mpn) +Θ

�
m2p

q

�

. (16)

F. Scalability analysis

We got null arithmetic overhead in the parallelization,
so the overhead time in the parallel algorithm is only due
to the communication time. We use the scalability con-
cepts shown in [11], then in order to get the necessary
problem size increment to keep constant a reference ef-
ficiency, we must compare the serial time with the total
communication time overhead (pTC(m,n, q, p)).

For the communication model A: n = Θ (p), m =
Θ (p) and n2/m = Θ (p/q) (if m = Θ (n), then n =
Θ (p/q)), so in general, n = Θ (p) and m = Θ (p)

For the communication model B: n = Θ
�
p2

�
, m =

Θ
�
p2

�
, and n2/m = Θ

�
p2/q

�
(if m = Θ (n), then

n = Θ
�
p2/q

�
), so in general n = Θ

�
p2

�
and m =

Θ
�
p2

�
.

The scalability of the parallel system will range be-
tween n,m = Θ (p) and n,m = Θ

�
p2

�
, depending on

the underlying network characteristics.

312 XIX Jornadas de Paralelismo

0 50 100 150 200 250 300
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

ti
m

e
 (

s
)

iteration

P0

P1

P2

P3

P4

P5

P6

P7

P8

P9

P10

P11

P12

P13

P14

P15

Fig. 2. Arithmetic time per iteration in every processor for m = 6000
and q = 20

0 1000 2000 3000 4000 5000 6000
0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

E
ff
ic

ie
n
cy

n

p=2
p=4
p=8
p=16

Fig. 3. Efficiency of parallel SRKF-OSIC for m = 6000 and q = 20

G. Experimental results

The tests have been run in a ccNUMA architecture
multiprocessor running a 64 bit Linux operating system
with up to 16 processors available to one user. Each pro-
cessor is a 1.3 GHz Itanium 2. The multiprocessor is or-
ganized as a hypercube in which every node is made up
of two sets of two processors. The communication band-
width between any two processors depends on the ubi-
cation of them in the system. The programs have been
coded in Fortran using a proprietary MPI communica-
tions library. All the test were made with the parameter
value m = 6000.

As an example of heterogeneous behavior, we have
emulated a heterogeneous parallel system repeating the
operations of every iteration only in some processors.
With this code repetition technique, the heterogenousity
is independent of the value of n. In the tests, the number
of repetitions were two in the half of the processors.

The result of the load balancing can be observed in
figure 2 for 16 processors. The figure depicts the arith-
metic time per iteration (there are m/q iterations, where
q = 20) and the load balancing based on (12) is got in the
last iterations as expected.

The maximum speedup in this emulated heterogeneous
parallel system is 3/4p (see (13) and (14)), so the maxi-
mum efficiency is 75%. Figure 3 depicts the experimental
efficiency value of the heterogenous parallel system for 2,
4, 8 and 16 processors and q = 20, versus n.

IV. CONCLUSIONS

We propose a pipelined parallel algorithm to solve part
of the OSIC decoding problem based on the square root
Kalman Filter. All the processes derived from the parallel
algorithm are regular so the execution in a heterogeneous
network implies that the load must be distributed accord-
ing to the processors speed. Although the ideal load bal-
ancing scheme is dynamic, the behavior of the static load
balancing scheme in the heterogeneous system was sat-
isfactory, with good efficiency results near to optimum
values.

ACKNOWLEDGEMENTS.

This work has been supported by the Vicerrectorado
de Innovación y Desarrollo de la Universidad Politécnica
de Valencia (number 20080009), and Spanish MEC and
FEDER under grant TIC 2003-08238-C02, and by the
Consejerı́a de Educación de la Comunidad de Murcia,
Fundación Séneca, project number 02973/PI/05.

REFERENCIAS

[1] G.J. Foschini, “Layered space-time architecture for wireless com-
munications in a fading environment when using multiple anten-
nas,” Bell Labs Technical Journal, vol. 1, pp. 41–59, 1996.

[2] S. Haykin and M. Moher, Modern Wireless Communications,
Prentice-Hall, Inc., NJ, USA, 2004.

[3] M. Sellathurai and S. Haykin, “Turbo-BLAST for wireless com-
munications: theory and experiments,” IEEE Transactions on Sig-
nal Processing, vol. 50, no. 10, pp. 2538–2546, Oct. 2002.

[4] P.W. Wolniansky, G.J. Foschini, G.D. Golden, and R.A. Valen-
zuela, “V-BLAST: An architecture for realizing very high data
rates over the rich-scattering wireless channel,” in Proc. IEEE
ISSSE-98, 1998, pp. 295–300.

[5] E. Viterbo and J. Boutros, “A universal lattice decoder for fading
channels,” IEEE Trans. Inf. Theory, vol. 45, no. 5, July 1999.

[6] B. Hassibi, “An efficient square-root algorithm for BLAST,” in
IEEE International Conference on Acoustics, Speech and Signal
Processing, 2000, vol. 2, pp. II737 – II740.

[7] Hufei Zhu, Zhongding Lei, and Francois P.S. Chin, “An improved
square-root algorithm for BLAST,” IEEE Signal Processing Let-
ters, vol. 11, no. 9, September 2004.

[8] Yang-Seok Choi, Peter J. Voltz, and Frank A. Cassara, “On chan-
nel estimation and detection for multicarrier signals in fast and
selective Rayleigh fading channels,” IEEE Transactions on Com-
munications, vol. 49, no. 8, August 2001.

[9] Ali H. Sayed and Thomas Kailath, “A state-space approach to
adaptive RLS filtering,” IEEE Signal Processing Magazine, vol.
11, no. 3, pp. 18–60, July 1994.

[10] G.H. Golub and C.F. Van Loan, Matrix Computations, Johns
Hopkins University Press, Baltimore, MD, USA, 1996.

[11] Vipin Kumar, Ananth Gram, Anshul Gupta, and George Karypis,
An Introduction to Parallel Computing: Design and Analysis of
Algorithms, chapter 4, Addison-Wesley, Harlow, England, second
edition, 2003.

Castellón, Septiembre 2008 313

