
Development and

Parallelization of a Physic

Engine

José Ginés Picón López

Director: Domingo Giménez Cánovas

Departamento de Informática y Sistemas

Universidad de Murcia, Spain

 Improve the speed and realism of game physical

simulation on next multi-core architectures.

 Achieve physic-based effect on a massive scale.

Snapshot of Midway's Stranglehold

Motivation

What We are Building
 Fully parallelized solid-rigid, iterative, impulse-

based physic engine for real-time applications.

 Optimized for multi-core architectures.

Libraries
C++ Object-oriented

design.

Use of OpenGL and

GLUT.

OpenMP API for multi-

platform shared-

memory parallel

programming.

MPI message-passing

interface.

Rigid Body Dynamics

Overview
3 phases to every simulation clock tick.

Integrate position and velocities in response to

forces and torques applied to.

Detect collisions.

Resolve collision.

Integration is easily parallelized because there
are no dependencies between objects.

Collisions require a deeper study.

Physics Simulation

Pipeline

Overview of the Engine
The engine has four part:

The force and torque generators examine

the current state of the game and calculate what

forces need to be applied to.

The rigid-body simulator processes the

movement in response to those forces.

The collision detector identifies collision and

stores a set of contacts.

The collision resolver processes the set of

contacts.

Collision Detection
Collision detection concerns the problems of

determining if, when, and where two object

come in contact.

Computer games involve simulation requiring

that a large number of queries be performed

at frame rates of about 30 to 60 frames per

second.

Collision detection can account for a large

percentage of the time it takes to complete a

game frame.

Bounding Volumes

Hierarchies
To accelerate collision, simple geometrical

objects such as spheres and boxes are

initially used to represent objects. More

complex objects will be represented forming

hierarchies.

Spatial Partitioning

Techniques
Spatial Partitioning techniques allow us to

divide space into regions and testing if

objects overlap the same region of space.

We use a tree structure for representing

collision detection: the binary space
partitioning tree (BSP).

A BSP can be used to partition space

independently from objects in the space.

BSP Trees
A leaf node of the tree consists of a single

object.

At each step, it checks pairs of nodes.

If the bounding volumes at the two nodes do

not overlap, then none of the objects in the

first subtree can collide with any object in the

second subtree.

BSP Tree Example

Parallelization
Initially, the engine will be parallelized using

the fork-join paradigm in which the program

consist of alternating serial and parallel

sections.

This is attractive because it allows us to start

with a serial program and later parallelize

portions of the code.

We will use OpenMP.

Parallelization
The majority of modules will be parallelized

via loop parallelization.

Each pair of BSP subtrees represents

independent computation and can be perform

in parallel.

Sometimes reordering data leads to more

parallelism.

References
Baraff, David. Witkin, Andrew.
Physically Based Modeling: Principles and Practice Course Notes.
Siggraph ’01 course notes. 2001.
http://www.pixar.com/companyinfo/research/pbm2001/

Davis, Tom. Woo, Mason. Neider, Jackie. Shreiner, Dave.
OpenGL Programming Guide.
Addison­Wesley. 2004.

Intel Technology Journal.
 High­Performance Physical Simulation on Next­Generation Architecture with Many Cores.
http://developer.intel.con/technology/itj/index.htm.

Van Verth, James M. Bishop, Lars M.
Essential Mathematics for Games.
Morgan Kaufmann. 2004.

Schneider, Philip. Eberly, David H..
Geometric Tools for Computer Graphics.
Morgan Kaufmann. 2002.

http://www.pixar.com/companyinfo/research/pbm2001/
http://www.pixar.com/companyinfo/research/pbm2001/
http://developer.intel.con/technology/itj/index.htm

