
Improving Metaheuristics for Mapping Improving Metaheuristics for Mapping
Independent Tasks into Heterogeneous Independent Tasks into Heterogeneous

MemoryMemory--Constrained SystemConstrained System

JavierJavier CuencaCuenca
Domingo GiménezDomingo Giménez

University of MurciaUniversity of Murcia
SPAINSPAIN

Mayo 2008, Murcia

Introduction
Mapping independent tasks to the processors in a heterogeneous
system
Master-slave scheme :

The tasks are generated by a processor and sent to other processors which
solve them and return the solutions to the initial one

In our approach:
Each task:

a computational cost
a memory requirement

Each processor:
a speeds
a certain amount of memory restriction on the tasks can be assigned

The goal is to obtain a task mapping which leads to a low total
execution time.
The general case is an NP problem heuristic methods preferable

Mayo 2008, Murcia

Scheduling Problem
The problem:

fixed arithmetic costs
no communications
t tasks:

arithmetic costs c = (c0, c1, …, ct-1)
memory requirements i = (i0, i1, …, it-1)

p processors
the times to perform a basic arithmetic operation
a = (a0, a1, …, ap-1),
memory capacities m = (m0, m1, …, mp-1),

Mayo 2008, Murcia

The problem:
from all the mappings, d = (d0, d1, …, dt¡1) (dk = j means task k is
assigned to processor j), with ik ≤ mdk , find d with which the following
mimimum is obtained:

A maximum of pt assignations not possible to solve the problem with
a reasonable time by generating all the possible mappings
An alternative: an approximate solution using some heuristic method

Scheduling Problem

Mayo 2008, Murcia

Application of Metaheuristics to the
Scheduling Problem

Application of metaheuristic methods to the version of the
scheduling problem previously described
The methods considered

Genetic Algorithm (GA)
Scatter Search (SS)
Tabu Search (TS)
GRASP (GR)

The goal:
to obtain a mapping with:

an associated modelled time close to the optimum
a low assignation time

Mayo 2008, Murcia

Application of Metaheuristics to the
Scheduling Problem

Mayo 2008, Murcia

Application of Metaheuristics to the
Scheduling Problem

Initialize. To create each individual of the initial set S. Assigns tasks to processors
with a probability proportional to the processor speed

•GA: a large initial population of assignations
•SS: a reduced number of elements in S
•TS: a set S with only one element.
•GR: In each iteration:

• the cost of each candidate is evaluated
• a number of candidates are selected to be included in the set of solutions.

Initialize. To create each individual of the initial set S. Assigns tasks to processors
with a probability proportional to the processor speed

•GA: a large initial population of assignations
•SS: a reduced number of elements in S
•TS: a set S with only one element.
•GR: In each iteration:

• the cost of each candidate is evaluated
• a number of candidates are selected to be included in the set of solutions.

ObtainSubset: Some of the individuals are selected randomly.
•GA: The individuals with better fitness function have more likelihood of being
selected.
•SS: It is possible to select all the elements for combination, or to select the best
elements to be combined with the worst ones.
•TS: This function is not necessary because |S| = 1.
•GR: One element from the set of solutions is selected to constitute the set SS
(|SS| = 1).

ObtainSubset: Some of the individuals are selected randomly.
•GA: The individuals with better fitness function have more likelihood of being
selected.
•SS: It is possible to select all the elements for combination, or to select the best
elements to be combined with the worst ones.
•TS: This function is not necessary because |S| = 1.
•GR: One element from the set of solutions is selected to constitute the set SS
(|SS| = 1).

Combine: The selected individuals are crossed, and SS1 is
obtained.
•GA, SS: The individuals can be crossed in different ways.
•TS, GR: This function is not necessary.

Combine: The selected individuals are crossed, and SS1 is
obtained.
•GA, SS: The individuals can be crossed in different ways.
•TS, GR: This function is not necessary.

Mayo 2008, Murcia

Improve:
•GA: A few individuals are selected to obtain other
individuals, which can differ greatly (mutation operands).
•SS: A greedy method. Evaluating the fitness value of
the elements obtained with the p possible processors in
each component.
•TS: Some elements in the neighborhood are analysed,
excluding tabu elements.
•GR: This function consists of a local search to improve
the element selected.

Improve:
•GA: A few individuals are selected to obtain other
individuals, which can differ greatly (mutation operands).
•SS: A greedy method. Evaluating the fitness value of
the elements obtained with the p possible processors in
each component.
•TS: Some elements in the neighborhood are analysed,
excluding tabu elements.
•GR: This function consists of a local search to improve
the element selected.

IncludeSolutions: Selects some elements of SS2 to be
included in S for the next iteration.
GA: The best individuals from the original set, their
descendants and the individuals obtained by mutation.
SS: The best elements are selected, as well as some
elements scattered to avoid falling within local
minimums.
TS, GR: The best element from those analysed is taken
as the next solution.

IncludeSolutions: Selects some elements of SS2 to be
included in S for the next iteration.
GA: The best individuals from the original set, their
descendants and the individuals obtained by mutation.
SS: The best elements are selected, as well as some
elements scattered to avoid falling within local
minimums.
TS, GR: The best element from those analysed is taken
as the next solution.

EndCondition:
GA, SS, TS, GR: maximum number of iterations, or that
the best fittness value does not change over a number of
iterations.

EndCondition:
GA, SS, TS, GR: maximum number of iterations, or that
the best fittness value does not change over a number of
iterations.

Mayo 2008, Murcia

Application of Metaheuristics to the Scheduling
Problem:
Basic Experimental Tuning of the Metaheuristics

Experiments with different tasks and systems configurations have been
carried out, obtaining similar results.
The experiments have the following configuration:

Each Task:
The size randomly generated between 1000 and 2000
The arithmetic cost is n3

The memory requirement n2

The number of processors in the system is the same as the number of tasks.
The costs of basic arithmetic operations: randomly generated between 0.1 and
0.2 µsecs.
The memory of each processor is between half the memory needed by the
biggest task and one and a half times this memory.

Mayo 2008, Murcia

Application of Metaheuristics to the Scheduling
Problem:
Basic Experimental Tuning of the Metaheuristics

Comparison of backtracking and the metaheuristics. Mapping time and
modelled execution time (in seconds), varying the number of tasks.

Mayo 2008, Murcia

Application of Metaheuristics to the Scheduling
Problem:
Basic Experimental Tuning of the Metaheuristics

Comparison of the metaheuristics for big systems. Mapping time and
modelled execution time (in seconds), varying the number of tasks

Mayo 2008, Murcia

Application of Metaheuristics to the Scheduling
Problem:
Advance Tuning of the Genetic Algorithm

In Combine: to change the heredity method:
T1: Each component is inherited pseudo-randomly, giving more
probability to the parent with best fittness value.

T2. choosing each component of a descendant from the less loaded
processor from those of its parents.

The load of a processor r, Wr:

Mayo 2008, Murcia

Application of Metaheuristics to the Scheduling
Problem:
Advance Tuning of the Genetic Algorithm

T3. In Improve: a hybrid approach, using a steered mutation:
Each task assigned to an overloaded processor is reassigned
randomly to another processor.

The solution mutates to another where the total loads of the
most overload processors have been reduced.

T4. In ObtainSubset:
To chose pseudo-randomly the solutions that will be combined,
giving more probability to the solutions with better fittness.

Mayo 2008, Murcia

Application of Metaheuristics to the Scheduling
Problem:
Advance Tuning of the Genetic Algorithm

Comparison of the different tunings applied to the Genetic Algorithm,
varying the number of tasks

Mayo 2008, Murcia

Application of Metaheuristics to the Scheduling
Problem:
Advance Tuning of the Genetic Algorithm

Evolution of the best solution from the new generated individuals per iteration for a
problem size of 1600 tasks. Without tuning (T0) applied to the routine Combine, with

T1 and with T2

0,00E+00

1,00E+09

2,00E+09

3,00E+09

4,00E+09

5,00E+09

6,00E+09

Iterations

T0
T1
T2

Mayo 2008, Murcia

Application of Metaheuristics to the Scheduling
Problem:
Advance Tuning of the Genetic Algorithm

Evolution of the best solution from the new generated individuals per iteration for a
problem size of 1600 tasks. Without tuning (T0) applied to the routine Improve, and

with T3

0,00E+00

1,00E+09

2,00E+09

3,00E+09

4,00E+09

5,00E+09

6,00E+09

Iterations

T0
T3

Mayo 2008, Murcia

Application of Metaheuristics to the Scheduling
Problem:
Advance Tuning of the Genetic Algorithm

Evolution of the best solution from the new generated individuals per iteration for a
problem size of 1600 tasks. Without tuning (T0) applied to the routine ObtainSubset,

and with T4

0,00E+00

1,00E+09

2,00E+09

3,00E+09

4,00E+09

5,00E+09

6,00E+09

7,00E+09

8,00E+09

9,00E+09

1,00E+10

Iterations

T0
T4

Mayo 2008, Murcia

Conclusions and Future Works
Some improvements of metaheuristics techniques to tasks to processors mapping problems:

The tasks
Independent
Various computational costs and memory requirements

The computational system:
Heterogeneous
Different memory capacities (communications are not yet considered).

The experiments to obtain satisfactory versions of the metaheuristics have been carried out
mainly with the GA where some detailed tuning techniques have been studied.

Future works
Advanced tunings, like those applied to the GA in this work, will be applied to the other metaheuristics
Different characteristics of the heterogeneous systems:

variable arithmetic cost in each processor depending on the problem size
variable communication cost in each link,...

Other general approximations (dynamic assignation of tasks, adaptive metaheuristics,...)

