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Introduction
Mapping independent tasks to the processors in a heterogeneous 
system 
Master-slave scheme :

The tasks are generated by a processor and sent to other processors which 
solve them and return the solutions to the initial one

In our approach: 
Each task:

a computational cost
a memory requirement

Each processor:
a speeds  
a certain amount of memory restriction on the tasks can be assigned

The goal is to obtain a task mapping which leads to a low total 
execution time.
The general case is an NP problem heuristic methods preferable
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Scheduling Problem
The problem: 

fixed arithmetic costs
no communications 
t tasks: 

arithmetic costs c = (c0, c1, …, ct-1) 
memory requirements i = (i0, i1, …, it-1)

p processors
the times to perform a basic arithmetic operation 
a = (a0, a1, …, ap-1),
memory capacities m = (m0, m1, …, mp-1), 
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The problem: 
from all the mappings, d = (d0, d1, …, dt¡1) (dk = j means task k is 
assigned to processor j), with ik ≤ mdk , find d with which the following 
mimimum is obtained: 

A maximum of pt assignations not possible to solve the problem with 
a reasonable time by generating all the possible mappings
An alternative: an approximate solution using some heuristic method

Scheduling Problem
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Application of Metaheuristics to the 
Scheduling Problem

Application of metaheuristic methods to the version of the 
scheduling problem previously described
The methods considered

Genetic Algorithm (GA)
Scatter Search (SS)
Tabu Search (TS) 
GRASP (GR)

The goal: 
to obtain a mapping with:

an associated modelled time close to the optimum
a low assignation time
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Application of Metaheuristics to the 
Scheduling Problem
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Application of Metaheuristics to the 
Scheduling Problem

Initialize. To create each individual of the initial set S. Assigns tasks to processors 
with a probability proportional to the processor speed

•GA: a large initial population of assignations
•SS: a reduced number of elements in S
•TS: a set S with only one element.
•GR: In each iteration:

• the cost of each candidate is evaluated
• a number of candidates are selected to be included in the set of solutions.

Initialize. To create each individual of the initial set S. Assigns tasks to processors 
with a probability proportional to the processor speed

•GA: a large initial population of assignations
•SS: a reduced number of elements in S
•TS: a set S with only one element.
•GR: In each iteration:

• the cost of each candidate is evaluated
• a number of candidates are selected to be included in the set of solutions.

ObtainSubset: Some of the individuals are selected randomly.
•GA: The individuals with better fitness function have more likelihood of being 
selected.
•SS: It is possible to select all the elements for combination, or to select the best 
elements to be combined with the worst ones.
•TS: This function is not necessary because |S| = 1.
•GR: One element from the set of solutions is selected to constitute the set SS 
(|SS| = 1).

ObtainSubset: Some of the individuals are selected randomly.
•GA: The individuals with better fitness function have more likelihood of being 
selected.
•SS: It is possible to select all the elements for combination, or to select the best 
elements to be combined with the worst ones.
•TS: This function is not necessary because |S| = 1.
•GR: One element from the set of solutions is selected to constitute the set SS 
(|SS| = 1).

Combine: The selected individuals are crossed, and SS1 is 
obtained.
•GA, SS: The individuals can be crossed in different ways. 
•TS, GR: This function is not necessary.

Combine: The selected individuals are crossed, and SS1 is 
obtained.
•GA, SS: The individuals can be crossed in different ways. 
•TS, GR: This function is not necessary.
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Improve:
•GA: A few individuals are selected to obtain other 
individuals, which can differ greatly (mutation operands). 
•SS: A greedy method. Evaluating the fitness value of 
the elements obtained with the p possible processors in 
each component.
•TS: Some elements in the neighborhood are analysed, 
excluding tabu elements.
•GR: This function consists of a local search to improve 
the element selected. 

Improve:
•GA: A few individuals are selected to obtain other 
individuals, which can differ greatly (mutation operands). 
•SS: A greedy method. Evaluating the fitness value of 
the elements obtained with the p possible processors in 
each component.
•TS: Some elements in the neighborhood are analysed, 
excluding tabu elements.
•GR: This function consists of a local search to improve 
the element selected. 

IncludeSolutions: Selects some elements of SS2 to be 
included in S for the next iteration.
GA: The best individuals from the original set, their 
descendants and the individuals obtained by mutation.
SS: The best elements are selected, as well as some 
elements scattered to avoid falling within local 
minimums.
TS, GR: The best element from those analysed is taken 
as the next solution.

IncludeSolutions: Selects some elements of SS2 to be 
included in S for the next iteration.
GA: The best individuals from the original set, their 
descendants and the individuals obtained by mutation.
SS: The best elements are selected, as well as some 
elements scattered to avoid falling within local 
minimums.
TS, GR: The best element from those analysed is taken 
as the next solution.

EndCondition:
GA, SS, TS, GR: maximum number of iterations, or that 
the best fittness value does not change over a number of 
iterations.

EndCondition:
GA, SS, TS, GR: maximum number of iterations, or that 
the best fittness value does not change over a number of 
iterations.
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Application of Metaheuristics to the Scheduling 
Problem:
Basic Experimental Tuning of the Metaheuristics

Experiments with different tasks and systems configurations have been 
carried out, obtaining similar results. 
The experiments have the following configuration: 

Each Task:
The size randomly generated between 1000 and 2000
The arithmetic cost is n3

The memory requirement n2

The number of processors in the system is the same as the number of tasks. 
The costs of basic arithmetic operations: randomly generated between 0.1 and 
0.2 µsecs. 
The memory of each processor is between half the memory needed by the 
biggest task and one and a half times this memory. 
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Application of Metaheuristics to the Scheduling 
Problem:
Basic Experimental Tuning of the Metaheuristics

Comparison of backtracking and the metaheuristics. Mapping time and 
modelled execution time (in seconds), varying the number of tasks.
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Application of Metaheuristics to the Scheduling 
Problem:
Basic Experimental Tuning of the Metaheuristics

Comparison of the metaheuristics for big systems. Mapping time and 
modelled execution time (in seconds), varying the number of tasks
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Application of Metaheuristics to the Scheduling 
Problem:
Advance Tuning of the Genetic Algorithm

In Combine: to change the heredity method: 
T1: Each component is inherited pseudo-randomly, giving more 
probability to the parent with best fittness value.

T2. choosing each component of a descendant from the less loaded 
processor from those of its parents. 

The load of a processor r, Wr:
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Application of Metaheuristics to the Scheduling 
Problem:
Advance Tuning of the Genetic Algorithm

T3. In Improve: a hybrid approach, using a steered mutation:
Each task assigned to an overloaded processor is reassigned 
randomly to another processor. 

The solution mutates to another where the total loads of the 
most overload processors have been reduced.

T4. In ObtainSubset:
To chose pseudo-randomly the solutions that will be combined, 
giving more probability to the solutions with better fittness.
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Application of Metaheuristics to the Scheduling 
Problem:
Advance Tuning of the Genetic Algorithm

Comparison of the different tunings applied to the Genetic Algorithm, 
varying the number of tasks
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Application of Metaheuristics to the Scheduling 
Problem:
Advance Tuning of the Genetic Algorithm

Evolution of the best solution from the new generated individuals per iteration for a 
problem size of 1600 tasks. Without tuning (T0) applied to the routine Combine, with 

T1 and with T2
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Application of Metaheuristics to the Scheduling 
Problem:
Advance Tuning of the Genetic Algorithm

Evolution of the best solution from the new generated individuals per iteration for a 
problem size of 1600 tasks. Without tuning (T0) applied to the routine Improve, and 

with T3
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Application of Metaheuristics to the Scheduling 
Problem:
Advance Tuning of the Genetic Algorithm

Evolution of the best solution from the new generated individuals per iteration for a 
problem size of 1600 tasks. Without tuning (T0) applied to the routine ObtainSubset, 

and with T4
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Conclusions and Future Works
Some improvements of metaheuristics techniques to tasks to processors mapping problems:

The tasks 
Independent
Various computational costs and memory requirements 

The computational system:
Heterogeneous
Different memory capacities (communications are not yet considered).

The experiments to obtain satisfactory versions of the metaheuristics have been carried out
mainly with the GA where some detailed tuning techniques have been studied.

Future works 
Advanced tunings, like those applied to the GA in this work, will be applied to the other metaheuristics
Different characteristics of the heterogeneous systems:

variable arithmetic cost in each processor depending on the problem size
variable communication cost in each link,... 

Other general approximations (dynamic assignation of tasks, adaptive metaheuristics,...)


