BERKOWITZ ALGORITHM IN PARALLEL WITH THE MAPLE GRID COMPUTING TOOLBOX

Gema M^a Díaz-Toca, Alfonso López Murcia

Universidad de Murcia, Spain, gemadiaz@um.es, alfonso@um.es

Goal: To compute the characteristic polynomial of a polynomial matrix.

Possible Algorithms

- Le Verrier Algorithm,
- Souriau-Faddeev-Frame Algorithm,
- Preparata-Sarwate Algorithm,

Sequential Berkowitz Algorithm[1]

Input: An *n*-square matrix $A \in \mathbb{D}^{n \times n}$. **Output**: Characteristic polynomial of A. (SBA.1) **Initialize** the vector Vect to

$$\operatorname{Vect} := \begin{pmatrix} 1 \\ -a_{11} \end{pmatrix}.$$

Grid Computing Toolbox

Grid Computing Toolbox offers MPI-like commands for message passing.

Command	Action
Send	Send a message
Receive	Receive a message

- Chistov Algorithm,
- Berkowitz Algorithm.

The Chosen: Berkowitz Algorithm Notation

- Let $A = (a_{ij}) \in \mathbb{Q}[\overline{x}]_{n \times n}$.
- \mathbb{I}_r : the identity $r \times r$ matrix;
- A_r : the leading principal submatrix of order r of A;
- $P_r(\lambda) = \det(\lambda \mathbb{I}_r A_r) = \sum_{i=0}^r c_i \lambda^i$ the characteristic polynomial of A_r ;
- R_r : the r row vector of elements $a_{r+1,j}$ such that $1 \leq j \leq r$ (here $r \leq n-1$);
- S_r : the r column vector of elements $a_{i,r+1}$ such that $1 \leq i \leq r$ (here $r \leq n-1$). • Given $P(\lambda) = \sum_{k=0}^{d} a_k \lambda^k$, and

 a_d

```
(SSBA.2) for r from 1 to n-1,
                   Compute the entries
      (SBA.2.1)
\{R_r A_r^{k-1} S_r\}_{k=1}^r of the Toeplitz matrix
Toep (Q_{r+1});
     (SBA.2.2) Update Vect into Vect :=
Toep (Q_{r+1}) \times \text{Vect};
```

(SBA.3) **Return** P'_n = Vect.

Parallel study

- Toeplitz matrices Toep (Q_{r+1}) are independent. So, (SBA.1) can be done in parallel.
- The characteristic polynomial $\vec{P_n}$ is provided by a product. This product can be done in parallel too.

The Tools

- Workstation with a Intel Pentium Quad Core processor.
- Maple 11, a comercial mathematics soft-

Seq Sequence over grid Map Map over grid

But structures with more than one dimension (like a Matrix) are not currently supported in Seq and Map commands. We only use Send and Receive commands like a MPI program.

First Parallel Algorithm

Load A from a file. A is in all processors. P_0 : for *i* from 2 to *nproc* Calculate index_toep_list; msg:=index_toep_list; $\mathbf{Send}(i-1, msg);$ P_0 : for *i* from 2 to *n* msg:=Receive();position:=op(1,msg);result:=op(2,msg);toeplist[position]:=result; P_0 : for *i* from 2 to *nproc* Calculate start and end of group of matrices; toepgroup:=[op(start..end,toeplist)];**Send**(i-1,toepgroup); $P_0: Q:=toepmatrixmult(1,myend);$ P_0 : for *i* from 2 to *nproc* result:= $\mathbf{Receive}(i-1);$

let Toep(P) denote a $(d+1) \times d$ subdiagonal Toeplitz matrix associated to the coefficients of P:

$$\operatorname{Toep}(P) = \begin{pmatrix} a_d & 0 & \cdots & 0 \\ a_{d-1} & a_d & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ a_1 & a_2 & \cdots & a_d \\ a_0 & a_1 & \cdots & a_{d-1} \end{pmatrix}.$$

The key: Samuelson's Formula Consider the following partition of A_{r+1} :

 $A_{r+1} = \begin{pmatrix} A_r & S_r \\ R_r & a_{r+1,r+1} \end{pmatrix},$ let $P_r(\lambda) = c_r \lambda^r + c_{r-1} \lambda^{r-1} + \ldots + c_0$. Then $\overrightarrow{P_{r+1}} = \text{Toep}\left(Q_{r+1}\right) \times \overrightarrow{P_r}$

ware for symbolic computation.

However, Maple 11 does not run in parallel. To parallelize Berkowitz Algorithm, there are two options:

1. Using OpenMaple API with MPI. 2. Buying the Grid Computing Toolbox for Maple.

OpenMaple is a suite of functions that allows you to access Maple algorithms and data structures in C, Java or Visual Basic programs. We transcribed Maple Berkowitz sequential code to a C program. Disadvantages:

• C code is complex.

- A lot of data type conversions are needed (C to Maple and viceversa).
- If Maple garbage collection runs, some variable values are cleaned and the program crashes. It's necessary to protect variables.

C:=op(2,result).Q;Q:=C; $P_0: \text{ polcar:=add}(Q[i+1] * X^{(n-i)}, i =$ 0..n);

 $P_{1..3}$: msg := **Receive**(0); $P_{1..3}$: for *i* from 1 to nops(msg)position:=op(1,msg);result:=toep(position); **Send**(0, [position, result]); $P_{1..3}$: matrixgroup:=**Receive**(0); $P_{1..3}$: result:=toepmatrixmult(matrixgroup); $P_{1..3}$: **Send**(0,[thisnode,result]);

where Q_{r+1} is

 $Q_{r+1} = \lambda^{r+1} - a_{r+1,r+1}\lambda^r - \sum_{i=0}^{r-1} R_r A_r^i S_r \lambda^{r-1-i}.$

So, the characteristic polynomial of A is

 $\overrightarrow{P_n}$ = Toep (Q_n) × Toep (Q_{n-1}) × · · · × Toep (Q_1)

As a result,

• Poor performance, times are high vs Maple times.

If we append MPI API to C code, there is no improvement. Therefore, we discard Open-Maple API with MPI. Grid Computing Toolbox for Maple is a Maple Library that contains procedures for distributing computations across an arbi-

trary number of machines and/or CPUs on the same machine.

Note

To start with parallel computation, Grid command Launch(nodes,code,printf,checkAbort,["A"]) imports A to each of the nodes.

Future work

To compare parallel time with sequential time. To optimize parallel algorithm.

References

[1] J. Abdeljaoued and H. Lombardi, Méthodes Matricielles. Introduction à la Complexité Algébrique. Springer (2004).

Acknowledgments. This work has been partially supported by the Department of Applied Mathematics and by MEC grant MTM2005-08690-C02-02.