Berkowitz Algorithm in parallel with the Maple Grid Computing Toolbox
 Gema Ma Díaz-Toca, Alfonso López Murcia
 Universidad de Murcia, Spain, gemadiaz@um.es, alfonso@um.es

Goal: To compute the characteristic polynomial of a polynomial matrix.

Possible Algorithms

- Le Verrier Algorithm,
- Souriau-Faddeev-Frame Algorithm,
- Preparata-Sarwate Algorithm,
- Chistov Algorithm,
- Berkowitz Algorithm.

The Chosen: Berkowitz Algorithm Notation
Let $A=\left(a_{i j}\right) \in \mathbb{Q}[\bar{x}]_{n \times n}$

- \mathbb{I}_{r} : the identity $r \times r$ matrix;
- A_{r} : the leading principal submatrix of order r of A;
- $P_{r}(\lambda)=\operatorname{det}\left(\lambda \mathbb{I}_{r}-A_{r}\right)=\sum_{i=0}^{r} c_{i} \lambda^{i}$ the characteristic polynomial of A_{r};
- R_{r} : the r row vector of elements $a_{r+1, j}$ such that $1 \leq j \leq r$ (here $r \leq n-1$);
- S_{r} : the r column vector of elements $a_{i, r+1}$ such that $1 \leq i \leq r$ (here $r \leq n-1)$.
- Given $P(\lambda)=\sum_{k=0}^{d} a_{k} \lambda^{k}$, and

$$
\vec{P}=\left(\begin{array}{c}
a_{d} \\
a_{d-1} \\
\vdots \\
a_{0}
\end{array}\right)
$$

let $\operatorname{Toep}(P)$ denote a $(d+1) \times d$ subdiagonal Toeplitz matrix associated to the coefficients of P

$$
\operatorname{Toep}(P)=\left(\begin{array}{cccc}
a_{d} & 0 & \cdots & 0 \\
a_{d-1} & a_{d} & \cdots & 0 \\
\vdots & \vdots & \cdots & \vdots \\
a_{1} & a_{2} & \cdots & a_{d} \\
a_{0} & a_{1} & \cdots & a_{d-1}
\end{array}\right)
$$

The key: Samuelson's Formula Consider the following partition of A_{r+1} :

$$
A_{r+1}=\left(\begin{array}{lc}
A_{r} & S_{r} \\
R_{r} & a_{r+1, r+1}
\end{array}\right)
$$

let $P_{r}(\lambda)=c_{r} \lambda^{r}+c_{r-1} \lambda^{r-1}+\ldots+c_{0}$. Then

$$
\overrightarrow{P_{r+1}}=\operatorname{Toep}\left(Q_{r+1}\right) \times \overrightarrow{P_{r}}
$$

where Q_{r+1} is
$Q_{r+1}=\lambda^{r+1}-a_{r+1, r+1} \lambda^{r}-\sum_{i=0}^{r-1} R_{r} A_{r}^{i} S_{r} \lambda^{r-1-i}$
So, the characteristic polynomial of A is
$\overrightarrow{P_{n}}=$ Toep $\left(Q_{n}\right) \times \operatorname{Toep}\left(Q_{n-1}\right) \times \cdots \times$ Toep $\left(Q_{1}\right)$
As a result,

Sequential Berkowitz Algorithm[1]
Input: An n-square matrix $A \in \mathbb{D}^{n \times n}$
Output: Characteristic polynomial of A
(SBA.1) Initialize the vector Vect to

$$
\text { Vect }:=\binom{1}{-a_{11}}
$$

(SSBA.2) for r from 1 to $n-1$
(SBA.2.1) Compute the entries $\left\{R_{r} A_{r}^{k-1} S_{r}\right\}_{k=1}^{r}$ of the Toeplitz matrix Toep $\left(Q_{r+1}\right)$
(SBA.2.2) Update Vect into Vect := $\operatorname{Toep}\left(Q_{r+1}\right) \times$ Vect
(SBA.3) Return $\overrightarrow{P_{n}}=$ Vect

Parallel study

- Toeplitz matrices Toep $\left(Q_{r+1}\right)$ are independent. So, (SBA.1) can be done in parallel.
- The characteristic polynomial $\overrightarrow{P_{n}}$ is provided by a product. This product can be done in parallel too.

The Tools

- Workstation with a Intel Pentium Quad Core processor
- Maple 11, a comercial mathematics software for symbolic computation.
However, Maple 11 does not run in parallel. To parallelize Berkowitz Algorithm, there are two options:

1. Using OpenMaple API with MPI.
2. Buying the Grid Computing Toolbox for Maple.
OpenMaple is a suite of functions that allows you to access Maple algorithms and data structures in C, Java or Visual Basic programs. We transcribed Maple Berkowitz sequential code to a C program. Disadvantages:

- C code is complex.
- A lot of data type conversions are needed (C to Maple and viceversa).
- If Maple garbage collection runs, some variable values are cleaned and the program crashes. It's necessary to protect variables.
- Poor performance, times are high vs Maple times.
If we append MPI API to C code, there is no improvement. Therefore, we discard OpenMaple API with MPI.
Grid Computing Toolbox for Maple is a Maple Library that contains procedures for distributing computations across an arbitrary number of machines and/or CPUs on the same machine.

Grid Computing Toolbox

Grid Computing Toolbox offers MPI-like commands for message passing.

Command	Action
Send	Send a message
Receive	Receive a message
Seq	Sequence over grid
Map	Map over grid

But structures with more than one dimension (like a Matrix) are not currently supported in Seq and Map commands. We only use Send and Receive commands like a MPI program.

First Parallel Algorithm

Load A from a file
A is in all processors.
P_{0} : for i from 2 to nproc
Calculate index toep list;
msg:=index_toep_list;
Send(i-1,msg);
P_{0} : for i from 2 to n

msg:=Receive();

position: $=o \mathrm{p}(1, \mathrm{msg})$;
result:=op $(2, \mathrm{msg})$;
toeplist[position]:=result
P_{0} : for i from 2 to nproc
Calculate start and end of group of matrices; toepgroup: $=[$ op(start..end,toeplist) $]$;
Send(i-1,toepgroup);
$P_{0}: \mathrm{Q}:=$ toepmatrixmult(1,myend);
P_{0} : for i from 2 to nproc
result:=Receive(i-1);
$\mathrm{C}:=\mathrm{op}(2$, result $) . \mathrm{Q}$;
$\mathrm{Q}:=\mathrm{C}$;
$P_{0}:$ polcar: $=\operatorname{add}\left(Q[i+1] * X^{(} n-i\right), i=$
$0 . . n$);
$P_{1 . .3}: \mathrm{msg}:=$ Receive (0);
$P_{1 . .3}$: for i from 1 to $\operatorname{nops}(\mathrm{msg})$
position: $=o p(1, \mathrm{msg})$;
result:=toep(position);
Send (0,[position,result]);
$P_{1 . .3}$: matrixgroup: $=$ Receive (0);
$P_{1 . .3}$: result:=toepmatrixmult(matrixgroup)
$P_{1.3}: \operatorname{Send}(0,[$ thisnode,result] $) ;$

Note

To start with parallel computation, Grid command Launch(nodes, code, printf, checkAbort, ["A"]) imports A to each of the nodes.

Future work

To compare parallel time with sequential time. To optimize parallel algorithm.

References

[1] J. Abdeljaoued and H. Lombardi, Méthodes Matricielles. Introduction à la Complexité Algébrique. Springer (2004).

