BERKOWITZ ALGORITHM IN PARALLEL
WITH THE MAPLE GRID COMPUTING TOOLBOX

Gema M2 Diaz-Toca, Alfonso Lopez Murcia

Universidad de Murcia, Spain, gemadiaz@Qum.es, alfonso@um.es

Goal: To compute the characteristic poly-
nomial of a polynomial matrix.

Possible Algorithms
e Le Verrier Algorithm,

e Souriau-Faddeev-Frame Algorithm,
e Preparata-Sarwate Algorithm,

e Chistov Algorithm,
e Berkowitz Algorithm.

The Chosen: Berkowitz Algorithm

Notation
Let A = (CLZ']') - Q[T]an.
o [.. the identity r X r matrix;

o A,: the leading principal submatrix of order

r of A
e P.()\) = det(A,—A,) = X, ;A" the char-
acteristic polynomial of A,;

e [7,: the r row vector of elements a,; ; such
that 1 < 7 <7r (herer <n —1);

e 5,: the r column vector of elements a; ;41
such that 1 <¢ <7 (herer <n —1).

e Given P()\) = X¢_, ap \¥, and
[aq)

=4 Aq—1
P =

\ a0
let Toep(P) denote a (d + 1) x d sub-

diagonal Toeplitz matrix associated to the
coeflicients of P:

(ad 0--- 0)

ag_1 ag -+ 0
Toep(P) =

ap az -+ Qq

\ a0 @ ag

The key: Samuelson’s Formula
Consider the following partition of A,.q :

A S
AT — T T 7
o (Rfr Ay41,r+1)

let P.(\) = N+, N T 4. +cy. Then

—

s
PT—l-l — Toep (QT+1) X P,

where ()1 1S
+1 — ‘ 1—i
T T () r—1—1
Q/r‘_|_1 — A _a//r_|_17/r‘_|_1A - Z RTA’)”‘STA .
=0

S50, the characteristic polynomial of
A is
_

P, = Toep (Qu)x Toep (Qu-1)x- - -xToep (Q1)

As a result,

Sequential Berkowitz Algorithm|1]
Input: An n-—square matrix A € p"*".
Output: Characteristic polynomial of A .

(SBA.1) Initialize the vector Vect to

Vect :—(!)
— A1

(SSBA.2) for r from 1to n—1,
(SBA.2.1) Compute the entries
{R,AY1S.}, . of the Toeplitz matrix
Toep (@)
(SBA.2.2) Update Vect into Vect :=
Toep (Qr11) x Vect)
(SBA.3) Return P, = Vect.

Parallel study

e Toeplitz matrices Toep (), 1) are indepen-
dent. So, (SBA.1) can be done in parallel.
H

e

e T'he characteristic polynomial P, is pro-
vided by a product. This product can be
done 1n parallel too.

The Tools

e Workstation with a Intel Pentium Quad
Core processor.

e Maple 11, a comercial mathematics soft-
ware for symbolic computation.

However, Maple 11 does not run in parallel.
To parallelize Berkowitz Algorithm, there are
two options:

1. Using OpenMaple API with MPI.

2. Buying the Grid Computing Toolbox for
Maple.

OpenMaple is a suite of functions that al-

lows you to access Maple algorithms and data
structures in C, Java or Visual Basic pro-
grams. We transcribed Maple Berkowitz se-
quential code to a C program. Disadvantages:

e C code 1s complex.

e A lot of data type conversions are needed
(C to Maple and viceversa).

e [f Maple garbage collection runs, some vari-
able values are cleaned and the program
crashes. It’s necessary to protect variables.

e Poor performance, times are high vs Maple
tumnes.

If we append MPI API to C code, there is no
improvement. Therefore, we discard Open-
Maple API with MPI.

Grid Computing Toolbox for Maple
1s a Maple Library that contains procedures
for distributing computations across an arbi-
trary number of machines and/or CPUs on
the same machine.

Grid Computing Toolbox
Grid Computing Toolbox offers MPI-like

commands for message passing.

Command|Action

Send Send a message
Receive |Receive a message
Seq Sequence over grid
Map Map over grid

But structures with more than one dimension
(like a Matrix) are not currently supported in
Seq and Map commands. We only use Send
and Receive commands like a MPI program.

First Parallel Algorithm

Load A from a file.

A 1s in all processors.

Fy: for 1 from 2 to nproc
Calculate index toep list;
msg:=index_toep_list:
Send(i-1,msg);

By: for ¢ from 2 to n
msg:=Receive();
position:=op(1,msg);
result:=op(2,msg);
toeplist|position|:=result;

Py for 1 from 2 to nproc
Calculate start and end of group of

matrices;
toepgroup:=|op(start..end toeplist)]|;
Send (i-1,toepgroup);

Py: Q:=toepmatrixmult(1,myend);

Fy: for 1 from 2 to nproc
result:=Receive(i-1);
C:=op(2,result).Q);

Q:=C;
Py: polcari=add(Q[i + 1] * X'n —4),i =
0..n);

P 3: msg .= Receive(0);

P, 3: for ¢ from 1 to nops(msg)
position:=op(1,msg);
result:=toep(position);

Send (0, |position,result|);

P; 3: matrixgroup:=Receive(0);

Py 3 result:=toepmatrixmult(matrixgroup);

P 3: Send(0,|thisnode,result]);

Note
To start with parallel computation, Grid command

Launch(nodes, code,printf, checkAbort, ["A"])
imports A to each of the nodes.

Future work

To compare parallel time with sequential time.
To optimize parallel algorithm.

References

1]J. Abdeljaoued and H. Lombardi, Méthodes
Matricielles. Introduction a la Complexité
Algébrique. Springer (2004).

Acknowledgments. This work has been partially supported by the Department of Applied Mathematics and by MEC grant MTM2005-08690-C02-02.

