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Goal: To compute the characteristic poly-

nomial of a polynomial matrix.

Possible Algorithms

•Le Verrier Algorithm,

•Souriau-Faddeev-Frame Algorithm,

•Preparata-Sarwate Algorithm,

•Chistov Algorithm,

•Berkowitz Algorithm.

The Chosen: Berkowitz Algorithm

Notation

Let A = (aij) ∈ Q[x]n×n .

• Ir: the identity r × r matrix;

•Ar: the leading principal submatrix of order

r of A;

•Pr(λ) = det(λIr−Ar) =
∑r

i=0 ciλ
i the char-

acteristic polynomial of Ar;

•Rr: the r row vector of elements ar+1,j such

that 1 ≤ j ≤ r (here r ≤ n − 1) ;

•Sr: the r column vector of elements ai,r+1

such that 1 ≤ i ≤ r (here r ≤ n − 1).

•Given P (λ) =
∑d

k=0 ak λk, and
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let Toep(P ) denote a (d + 1) × d sub-

diagonal Toeplitz matrix associated to the

coefficients of P :
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The key: Samuelson’s Formula

Consider the following partition of Ar+1 :

Ar+1 =





Ar Sr

Rr ar+1,r+1



 ,

let Pr(λ) = crλ
r +cr−1λ

r−1+ . . .+c0 . Then

−−→
Pr+1 = Toep (Qr+1) ×

−→
Pr

where Qr+1 is

Qr+1 = λr+1−ar+1,r+1λ
r−

r−1
∑

i=0

RrA
i
rSrλ

r−1−i.

So, the characteristic polynomial of

A is

−→
Pn = Toep (Qn)×Toep (Qn−1)×· · ·×Toep (Q1).

As a result,

Sequential Berkowitz Algorithm[1]

Input: An n –square matrix A ∈ D
n×n .

Output: Characteristic polynomial of A .

(SBA.1) Initialize the vector Vect to

Vect :=





1

− a11



 .

(SSBA.2) for r from 1 to n − 1 ,

(SBA.2.1) Compute the entries

{RrA
k−1
r Sr}

r

k=1 of the Toeplitz matrix

Toep (Qr+1) ;

(SBA.2.2) Update Vect into Vect :=

Toep (Qr+1) × Vect ;

(SBA.3) Return
−→
Pn = Vect.

Parallel study

•Toeplitz matrices Toep (Qr+1) are indepen-

dent. So, (SBA.1) can be done in parallel.

•The characteristic polynomial
−→
Pn is pro-

vided by a product. This product can be

done in parallel too.

The Tools

•Workstation with a Intel Pentium Quad

Core processor.

•Maple 11, a comercial mathematics soft-

ware for symbolic computation.

However, Maple 11 does not run in parallel.

To parallelize Berkowitz Algorithm, there are

two options:

1.Using OpenMaple API with MPI.

2.Buying the Grid Computing Toolbox for

Maple.

OpenMaple is a suite of functions that al-

lows you to access Maple algorithms and data

structures in C, Java or Visual Basic pro-

grams. We transcribed Maple Berkowitz se-

quential code to a C program. Disadvantages:

•C code is complex.

•A lot of data type conversions are needed

(C to Maple and viceversa).

• If Maple garbage collection runs, some vari-

able values are cleaned and the program

crashes. It’s necessary to protect variables.

•Poor performance, times are high vs Maple

times.

If we append MPI API to C code, there is no

improvement. Therefore, we discard Open-

Maple API with MPI.

Grid Computing Toolbox for Maple

is a Maple Library that contains procedures

for distributing computations across an arbi-

trary number of machines and/or CPUs on

the same machine.

Grid Computing Toolbox

Grid Computing Toolbox offers MPI-like

commands for message passing.

Command Action

Send Send a message

Receive Receive a message

Seq Sequence over grid

Map Map over grid

But structures with more than one dimension

(like a Matrix) are not currently supported in

Seq and Map commands. We only use Send

and Receive commands like a MPI program.

First Parallel Algorithm

Load A from a file.

A is in all processors.

P0 : for i from 2 to nproc

Calculate index toep list;

msg:=index toep list;

Send(i-1,msg);

P0 : for i from 2 to n

msg:=Receive();

position:=op(1,msg);

result:=op(2,msg);

toeplist[position]:=result;

P0 : for i from 2 to nproc

Calculate start and end of group of

matrices;

toepgroup:=[op(start..end,toeplist)];

Send(i-1,toepgroup);

P0 : Q:=toepmatrixmult(1,myend);

P0 : for i from 2 to nproc

result:=Receive(i-1);

C:=op(2,result).Q;

Q:=C;

P0 : polcar:=add(Q[i + 1] ∗ X (n − i), i =

0..n);

P1..3 : msg := Receive(0);

P1..3 : for i from 1 to nops(msg)

position:=op(1,msg);

result:=toep(position);

Send(0,[position,result]);

P1..3 : matrixgroup:=Receive(0);

P1..3 : result:=toepmatrixmult(matrixgroup);

P1..3 : Send(0,[thisnode,result]);

Note

To start with parallel computation, Grid command
Launch(nodes,code,printf,checkAbort,["A"])

imports A to each of the nodes.

Future work

To compare parallel time with sequential time.
To optimize parallel algorithm.
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