
Berkowitz Algorithm in parallel

with the Maple Grid Computing Toolbox

Gema Ma Dı́az-Toca, Alfonso López Murcia

Universidad de Murcia, Spain, gemadiaz@um.es, alfonso@um.es

Goal: To compute the characteristic poly-

nomial of a polynomial matrix.

Possible Algorithms

•Le Verrier Algorithm,

•Souriau-Faddeev-Frame Algorithm,

•Preparata-Sarwate Algorithm,

•Chistov Algorithm,

•Berkowitz Algorithm.

The Chosen: Berkowitz Algorithm

Notation

Let A = (aij) ∈ Q[x]n×n .

• Ir: the identity r × r matrix;

•Ar: the leading principal submatrix of order

r of A;

•Pr(λ) = det(λIr−Ar) =
∑r

i=0 ciλ
i the char-

acteristic polynomial of Ar;

•Rr: the r row vector of elements ar+1,j such

that 1 ≤ j ≤ r (here r ≤ n − 1) ;

•Sr: the r column vector of elements ai,r+1

such that 1 ≤ i ≤ r (here r ≤ n − 1).

•Given P (λ) =
∑d

k=0 ak λk, and

−→
P =

















ad

ad−1

...

a0

















,

let Toep(P) denote a (d + 1) × d sub-

diagonal Toeplitz matrix associated to the

coefficients of P :

Toep(P) =























ad 0 · · · 0

ad−1 ad · · · 0
...

a1 a2 · · · ad

a0 a1 · · · ad−1























.

The key: Samuelson’s Formula

Consider the following partition of Ar+1 :

Ar+1 =





Ar Sr

Rr ar+1,r+1



 ,

let Pr(λ) = crλ
r +cr−1λ

r−1+ . . .+c0 . Then

−−→
Pr+1 = Toep (Qr+1) ×

−→
Pr

where Qr+1 is

Qr+1 = λr+1−ar+1,r+1λ
r−

r−1
∑

i=0

RrA
i
rSrλ

r−1−i.

So, the characteristic polynomial of

A is

−→
Pn = Toep (Qn)×Toep (Qn−1)×· · ·×Toep (Q1).

As a result,

Sequential Berkowitz Algorithm[1]

Input: An n –square matrix A ∈ D
n×n .

Output: Characteristic polynomial of A .

(SBA.1) Initialize the vector Vect to

Vect :=





1

− a11



 .

(SSBA.2) for r from 1 to n − 1 ,

(SBA.2.1) Compute the entries

{RrA
k−1
r Sr}

r

k=1 of the Toeplitz matrix

Toep (Qr+1) ;

(SBA.2.2) Update Vect into Vect :=

Toep (Qr+1) × Vect ;

(SBA.3) Return
−→
Pn = Vect.

Parallel study

•Toeplitz matrices Toep (Qr+1) are indepen-

dent. So, (SBA.1) can be done in parallel.

•The characteristic polynomial
−→
Pn is pro-

vided by a product. This product can be

done in parallel too.

The Tools

•Workstation with a Intel Pentium Quad

Core processor.

•Maple 11, a comercial mathematics soft-

ware for symbolic computation.

However, Maple 11 does not run in parallel.

To parallelize Berkowitz Algorithm, there are

two options:

1.Using OpenMaple API with MPI.

2.Buying the Grid Computing Toolbox for

Maple.

OpenMaple is a suite of functions that al-

lows you to access Maple algorithms and data

structures in C, Java or Visual Basic pro-

grams. We transcribed Maple Berkowitz se-

quential code to a C program. Disadvantages:

•C code is complex.

•A lot of data type conversions are needed

(C to Maple and viceversa).

• If Maple garbage collection runs, some vari-

able values are cleaned and the program

crashes. It’s necessary to protect variables.

•Poor performance, times are high vs Maple

times.

If we append MPI API to C code, there is no

improvement. Therefore, we discard Open-

Maple API with MPI.

Grid Computing Toolbox for Maple

is a Maple Library that contains procedures

for distributing computations across an arbi-

trary number of machines and/or CPUs on

the same machine.

Grid Computing Toolbox

Grid Computing Toolbox offers MPI-like

commands for message passing.

Command Action

Send Send a message

Receive Receive a message

Seq Sequence over grid

Map Map over grid

But structures with more than one dimension

(like a Matrix) are not currently supported in

Seq and Map commands. We only use Send

and Receive commands like a MPI program.

First Parallel Algorithm

Load A from a file.

A is in all processors.

P0 : for i from 2 to nproc

Calculate index toep list;

msg:=index toep list;

Send(i-1,msg);

P0 : for i from 2 to n

msg:=Receive();

position:=op(1,msg);

result:=op(2,msg);

toeplist[position]:=result;

P0 : for i from 2 to nproc

Calculate start and end of group of

matrices;

toepgroup:=[op(start..end,toeplist)];

Send(i-1,toepgroup);

P0 : Q:=toepmatrixmult(1,myend);

P0 : for i from 2 to nproc

result:=Receive(i-1);

C:=op(2,result).Q;

Q:=C;

P0 : polcar:=add(Q[i + 1] ∗ X (n − i), i =

0..n);

P1..3 : msg := Receive(0);

P1..3 : for i from 1 to nops(msg)

position:=op(1,msg);

result:=toep(position);

Send(0,[position,result]);

P1..3 : matrixgroup:=Receive(0);

P1..3 : result:=toepmatrixmult(matrixgroup);

P1..3 : Send(0,[thisnode,result]);

Note

To start with parallel computation, Grid command
Launch(nodes,code,printf,checkAbort,["A"])

imports A to each of the nodes.

Future work

To compare parallel time with sequential time.
To optimize parallel algorithm.

References

[1] J. Abdeljaoued and H. Lombardi, Méthodes

Matricielles. Introduction à la Complexité

Algébrique. Springer (2004).

Acknowledgments. This work has been partially supported by the Department of Applied Mathematics and by MEC grant MTM2005-08690-C02-02.

