
technology
from seedStream-based concurrent computational

models
and programming tools

Leonel Sousa

with

Shinichi Yamagiwa

University of Murcia

27-05-2008Stream-based concurrent computational models and programming tools1

technology
from seed

Outline

1. Many-core platforms based on GPU’s

1. GPGPU: Computation Models and Programming tools

1. Stream based computing

2. Massively parallelism based on Multithreading

3. APIs and Programming tools

University of Murcia

27-05-2008Stream-based concurrent computational models and programming tools2

3. APIs and Programming tools

2. Caravela Project

1. Flow-Model and Caravela Platform

2. Caravela Tools for programming GPUs (locally and remotely)

3. Optimizations for current GPUs/Systems

4. Future Work

technology
from seed

Graphics Processing Units

• Graphics Processing Units (GPUs)

– Available in all computers

– Unused high computational capacity

– Manycore processing systems

University of Murcia

27-05-2008Stream-based concurrent computational models and programming tools3

GPGPU - General-Purpose computation on GPUs

• Usage of GPUs for GPGPU

– Graphics APIs are not tuned for general-purpose applications

– Programmer has to learn irrelevant graphics concepts

– Data copy from main memory to video memory is slow
• PCI-E system bus

technology
from seed

GPU Structure

Vertex processor
Pixel

Processor

Textures for objects
Final Output

y

x

z

y

x

z

University of Murcia

27-05-2008Stream-based concurrent computational models and programming tools4

• Stream-based processing with four elements
– Vertex processor: x, y, z, w
– Pixel processor: operates on pixel data in a vector approach , issuing instructions to operate

concurrently on the multiple color components of a pixel -R(ed), G(reen), B(lue) and A(lpha)

• Vertex and Pixel processors are programmable
– DirectX assembly language and HLSL
– OpenGL Shader Language (GLSL)

Standardized

Referential Axes

Map the vertices of

objects into standard

referential axes

Rasterizer

Interpolates the vertices,

creating planes

Apply texture to objects

technology
from seed

Texture mapping example

ps_2_0

def c0, 0.5,0.5,0.5,0
def c1, 1,1,1,1

dcl_2d s0
dcl_2d s1

dcl t0.xy

α

Coordinates of textures

DirectX assembly language

Pixel Shader Model 2.0

University of Murcia

27-05-2008Stream-based concurrent computational models and programming tools5

dcl t0.xy
dcl t1.xy

texld r2, t0, s0
texld r3, t1, s1

mov r5, c1
sub r5, r5, c0
mul r2, r2, r5
mad r4, r3, c0, r2

mov oC0, r4

P’ = Pa(1-α)+Pbα

Alpha blending

Da Vinci

Mona Lisa

Coordinates of textures

Pa(1-α)

Pa(1-α)+Pbα

Output of results

technology
from seed

GPU Performance

• GPU drastically improves performance in the last 5 years

GeForce7000

GeForce7000-512

GeForce7100

GeForce8000

G
F

L
O

P
S

University of Murcia

27-05-2008Stream-based concurrent computational models and programming tools6

NV30

NV35
NV45

GeForce7000

Intel Core2 Duo

3.0GHz

G
F

L
O

P
S

technology
from seed

GPGPU applications

• GPU supports general purpose processing (data-parallelism)
– with high number of arithmetic calculations per memory access

• Examples (www.gpgpu.org)
– Physics simulation

University of Murcia

27-05-2008Stream-based concurrent computational models and programming tools7

– Physics simulation

– Signal processing

– Computational geometry

– Database management

– Computational biology

– Computational finance

– Computer vision

– …..

technology
from seed

GPU architecture

GeForce 8800 [source: NVIDIA]

University of Murcia

27-05-2008Stream-based concurrent computational models and programming tools8

technology
from seed

GPU architecture
Case study: GeForce 8800

330 Gflop/s (issue rate for MAC), 86.4 GB/s peak mem. bandwidth

• 128 stream processors: 8 clusters of 16 SPs

• SPs aren't vertex or pixel shaders: generalized floating-point
processors capable of operating on vertices, pixels, or any data

– most GPUs operate on pixel data in a way (R,G,B,A) but the G80's SP is scalar

• SPs are clocked at a relatively speedy 1.35GHz, while most of the rest of the

University of Murcia

27-05-2008Stream-based concurrent computational models and programming tools9

• SPs are clocked at a relatively speedy 1.35GHz, while most of the rest of the
chip is clocked independently at 575MHz

– GeForce 8800: a tremendous amount of raw floating-point processing power

• The cores in a cluster share:
– local memory (L1)

– banks of specialized hardware (TF) for implementing texture fetch operations

• High performance access to the frame buffer memory (FB)
– to store both texture data and rendered images

technology
from seed

Computation Models:
Stream processing

• Input data is streamed in from one or more input arrays,

processed by a stream kernel, and then streamed out to

one or more output arrays

• A stream kernel can be thought of as:

– function that is applied in parallel to every element of one or more

University of Murcia

– function that is applied in parallel to every element of one or more
input arrays and produces one or more output arrays

27-05-2008Stream-based concurrent computational models and programming tools10

Cache

ALU
Control

ALU

ALU

ALU

DRAM DRAM

technology
from seed

Computation Models:
Stream processing

• Applications can easily be limited by memory bandwidth
– Restrictions: memory accesses oriented to pixel processing

– Only gather: can read data from other pixels

ALU
Control

Cache
ALU ALU ... ALU

Control

Cache
ALU ALU ... …

University of Murcia

– No scatter: (Can only write to one pixel)

27-05-2008Stream-based concurrent computational models and programming tools11

DRAM d0 d1 d2 d3 d4 d5 d6 d7
…

DRAM

ALU
Control

Cache
ALU ALU ...

d0 d1 d2 d3

ALU
Control

Cache
ALU ALU ...

d4 d5 d6 d7

…

…

technology
from seed

Computation Models:
Multithreading

• SPMD + SIMD Model

– Data-parallel portions of an
application are executed as
kernels which run in parallel on
many threads

• A kernel is executed as a grid of

Host

Kern
el 1

Device

Grid 1

Block
(0, 0)

Block
(1, 0)

Block
(2, 0)

Block
(0, 1)

Block
(1, 1)

Block
(2, 1)

Compute Unified Device Architecture (CUDA): NVIDIA proprietary

University of Murcia

• A kernel is executed as a grid of

thread blocks

– A thread block is a batch of threads
that can cooperate with each other
through shared memory

• Two threads from two different

blocks cannot cooperate

27-05-2008Stream-based concurrent computational models and programming tools12

Kern
el 2

Grid 2

Block (1, 1)

Thread

(0, 1)

Thread

(1, 1)

Thread

(2, 1)

Thread

(3, 1)

Thread

(4, 1)

Thread

(0, 2)

Thread

(1, 2)

Thread

(2, 2)

Thread

(3, 2)

Thread

(4, 2)

Thread

(0, 0)

Thread

(1, 0)

Thread

(2, 0)

Thread

(3, 0)

Thread

(4, 0)

technology
from seed

Computation Models:
Multithreading

• Massive parallelism for GPUs

to hide memory access and

pipeline latencies
– For instance, a single processing

element in a GPU might run several

threads at once and switch between

them whenever a high-latency

Grid

(0, 0)

Shared Memory

Thread (0, 0)

Registers

Thread (1, 0)

Register

s

Block (1, 0)

Shared Memory

Thread (0, 0)

Register

s

Thread (1, 0)

Register

s

University of Murcia

them whenever a high-latency

operation is encountered.

• Read/write per-thread

• registers, local memory

• Read/write per-block

• shared memory

• Read/write per-grid

• global memory

27-05-2008Stream-based concurrent computational models and programming tools13

Constant

Memory

Texture

Memory

Global

Memory

Local

Memory

Thread (0, 0)

Local

Memory

Thread (1, 0)

Local

Memory

Thread (0, 0)

Local

Memory

Thread (1, 0)

Host

technology
from seed

APIs and Programming tools:
CUDA

• CUDA API is an extension to the C language

– extensions to target portions of the code for execution on the
device

– a runtime library split into

• a common component providing built-in vector types and a

University of Murcia

• a common component providing built-in vector types and a
subset of the C runtime library supported in both host and device

codes

• A host component to control and access one or more devices
from the host

• A device component providing device-specific functions

27-05-2008Stream-based concurrent computational models and programming tools14

technology
from seed

APIs and Programming tools:
Heterogenous Multi-core Parallel
Programming (HMPP)

• The GPU is always viewed as a

computing device that:

– is a coprocessor to the CPU or host

– has its own DRAM (device memory)

• Approach similar to OpenMP, but

designed to handle hardware

University of Murcia

designed to handle hardware

accelerators

– application source code portable

• sequential binary -> traditional compiler

• CAPS HMPP is:

– a set of compiler directives and runtime
software for multicore programming in C

27-05-2008Stream-based concurrent computational models and programming tools15

technology
from seed

Caravela:
Motivation

• A new execution model for local and remote computation is required

• Stream computing is the expected for the next high performance
computing method

• GPU never touches resources on host machine using stream-based
computation, so security can be guaranteed

University of Murcia

27-05-2008Stream-based concurrent computational models and programming tools16

Caravela: A new platform for distributed computing

Stream-based computation on GPU can be applied to distributed

computing

technology
from seed

Caravela Project:
Project Roadmap

Flow-model

GPU

Basic Concept

Distributed Computing
Implementation dependent

Caravela Platform

University of Murcia

27-05-2008Stream-based concurrent computational models and programming tools17

Pipeline-model

GPU

Emulator

Execution Optimization
on GPU

Algorithm development
for different applications

Performance Optimization

Meta-pipeline

Task Scheduling in

Distributed environment

Dedicated Hardware

technology
from seed

Caravela Platform:
Flow-model

• Memory effect by introducing
feedback

• Program does not touch other
resources beyond I/O streams

• Flow-model encapsulates a
task object

University of Murcia

27-05-2008Stream-based concurrent computational models and programming tools18

task object

• Flow-model can be fetched
from remote site.

Caravela provides a set of tools

for executing a flow-model unit.

FlowModelCreator and Caravela Library

technology
from seed

Caravela Platform:
Runtime Environment

• Resource definition in Caravela library

– Machine: has Adapter(s)

– Adapter: has Shader(s)

– Shader: Pixel Processor(s)

• Programming steps in application

1. Acquire shaders

University of Murcia

27-05-2008Stream-based concurrent computational models and programming tools19

1. Acquire shaders

2. Define flow-models

3. Map flow-models to shaders

4. Setup input streams

5. Fire flow-models

6. Get output data streams

technology
from seed

Caravela Platform：：：：
Runtime for remote execution

• Remote execution runtime supports:

– Worker server: executes flow-models.

– Broker server: maintains routing information to worker servers.

Broker
Map and execute

Flow-model

University of Murcia

27-05-2008Stream-based concurrent computational models and programming tools20

Broker

Worker Worker

Application machine

Parent BrokerParent broker

Parent broker

Request Forwarding

Request Forwarding

Map and execute

Flow-model

Result

technology
from seed

Caravela Platform:
Caravela library

• Initialization and Finalization
CARAVELA_Initialize(RUNTIME), CARAVELA_Finalize(RUNTIME)

• Flow-model creation
flow-model � CARAVELA_CreateFlowModelFromFile(filename)

• Machine creation
machine � CARAVELA_CreateMachine(machine_type)

• Getting Shader
shader � CARAVELA_QueryShader(machine)

University of Murcia

27-05-2008Stream-based concurrent computational models and programming tools21

shader � CARAVELA_QueryShader(machine)

• Mapping Flow-model into Shader
fuse � CARAVELA_MapFlowModelIntoShader(shader, flow-model)

• Initialization for input data stream
input data stream buffer � CARAVELA_GetInputData(flow-model)

• Execution of Flow-model
CARAVELA_FireFlowModel(fuse)

• Getting output data stream
output data stream buffer � CARAVELA_GetOutputData()

machine_type is “REMOTE” for remote execution.

technology
from seed

Caravela Platform:
1D FIR Filter

∑
=

−
=

15

0

*
i

inin xby

void main(){

int i,j;

float inv = 1.0/Const4.x;

vec4 res = vec4(0.0,0.0,0.0,0.0);

vec2 coord = gl_TexCoord[0].xy;

vec4 data0 = texture2D(CaravelaTex0, coord);

coord.x+=inv;

vec4 data1 = texture2D(CaravelaTex0, coord);

coord.x+=inv;

vec4 data2 = texture2D(CaravelaTex0, coord);

// for x value

for(j=0; j<4; j++){

void main(in float2 t0: TEXCOORD0,

out float4 oC0: COLOR0){

int j;

float inv = 1.0/Const4.x;

float4 res = 0;

float2 coord = t0;

float4 data0 = tex2D(CaravelaTex0, coord);

coord.x += inv;

float4 data1 = tex2D(CaravelaTex0, coord);

coord.x += inv;

float4 data2 = tex2D(CaravelaTex0, coord);

// for x value

x b

University of Murcia

27-05-2008Stream-based concurrent computational models and programming tools22

for(j=0; j<4; j++){

res.x += data0[j] * Const0[j];

res.x += data1[j] * Const1[j];

}

// for y value

for(j=1;j<4;j++)

res.y += data0[j] * Const0[j-1];

res.y += data1[0] * Const0[3];

for(j=1; j<4; j++)

res.y += data1[j] * Const1[j-1];

res.y += data2[0] * Const1[3];

...

gl_FragData[0] = res;

}

// for x value

for(j=0; j<4; j++)

res.x += data0[j] * taps[j][0];

for(j=0; j<4; j++)

res.x += data1[j] * taps[j][1];

// for y value

for(j=1;j<4;j++)

res.y += data0[j] * taps[j-1][0];

res.y += data1[0] * taps[3][0];

for(j=1; j<4; j++)

res.y += data1[j] * taps[j-1][1];

res.y += data2[0] * taps[3][1];

oC0 = res;

}

DirectX (HLSL)
OpenGL (GLSL)

y

technology
from seed

Caravela Platform:
Experimental Results

Machine1 Machine2

CPU
AMD Opteron 2GHz

2GB DDR400

Intel CoreDuo 1.66GHz

1GB DDR2

University of Murcia

27-05-2008Stream-based concurrent computational models and programming tools23

CPU
2GB DDR400 1GB DDR2

GPU
NVIDIA GeForce 7300GS

256MB DDR

NVIDIA GeForce Go 7400

128MB DDR2

technology
from seed

Caravela Platform:
Experimental Results

8

10

12

Caravela (DX9) Caravela (OpenGL) CPU

• 1D FIR Filter

• Input：1M samples ×30 iterations

• S= 4-10 times regarding to CPU

E
x
ec

u
ti

o
n
 t

im
e

(s
)

University of Murcia

27-05-2008Stream-based concurrent computational models and programming tools24

0

2

4

6

Opteron +

GF7300

CoreDuo +

GF7400

• S= 4-10 times regarding to CPU

E
x
ec

u
ti

o
n
 t

im
e

(
Caravela platform speeds up

local processing

technology
from seed

Local Optimizations:
Recursive processing

• Recursive processing with flow-model

– Output streams must be copied to input streams
→ performance degrades due to the copy overhead

• Example: IIR Filter

– Output “y” is feed-forwarded to input recursively.

∑∑ −−
+=

87

** knkinin ybxby

x

Recursive y

b

University of Murcia

27-05-2008Stream-based concurrent computational models and programming tools25

∑∑
=

−

=

−
+=

10

**
k

knk

i

inin ybxby
Recursive y

y

E
x
e

c
u

io
n

 t
im

e
 (

s
e

c
)

technology
from seed

Local optimizations:
Swap mechanism

• Swap mechanism: Optimization for recursive I/O

– Pair � CARAVELA_CreateSwapIoPair(input_index, output_index)

– CARAVELA_SwapFlowmodelIo(Pair)

Pair = CARAVELA_CreateSwapIoPair(0,1)

While(…){

University of Murcia

27-05-2008Stream-based concurrent computational models and programming tools26

CARAVELA_SwapFlowmodelIo(pair)

Fire flow-model…

While(…){

}

technology
from seed

Local optimizations:
Implementation of Swap mechanism

Conventional method Swap mechanism

University of Murcia

27-05-2008Stream-based concurrent computational models and programming tools27

Output stream copied

VRAM →CPU memory and

CPU memory → VRAM

Exchanges pointers of I/O
buffers in the GPU side.

technology
from seed

Local optimizations:
Swap mechanism

• OpenGL is used as the graphics
runtime:

– CARAVELA_SwapFlowmodelIO() for
swap mechanism

• Swap:

Improves performance 55-60% E
x
e
c
u
ti
o
n
 t
im

e
 (

s
e

c
)

University of Murcia

27-05-2008Stream-based concurrent computational models and programming tools28

E
x
e
c
u
ti
o
n
 t
im

e
 (

s
e
c
)

Swap mechanism is an

effective optimization

technique.

technology
from seed

Local optimizations:

Remap method

• I/O overhead of GPGPU application

– Copy operation among CPU memory-VRAM

– Overhead in GPU at writing output stream to VRAM

University of Murcia

27-05-2008Stream-based concurrent computational models and programming tools29

– Overhead in Pixel processor at reading textures

Smaller texture size may result in better performance.

technology
from seed

Local optimizations:

Remap method

• Iterating with 3000x3000 texture
input and applying Swap mechanism

– Spot depending on the number of
iterations of Swap mechanism

– GeForce7300: 1500 iterations

5

10

15

20

25

30

35

40

E
x
e
c
u
ti
o
n
 t
im

e
 (

s
e
c
)

2 texture2Ds

3 texture2Ds

4 texture2Ds

5 texture2Ds

6 texture2Ds

University of Murcia

27-05-2008Stream-based concurrent computational models and programming tools30

– GeForce7900: 2000 iterations

0

100 600 1100 1600 2100 2600

Number of iterations

0

5

10

15

20

25

30

100 600 1100 1600 2100 2600

Number of iterations

E
x
e

c
u
ti
o

n
 t
im

e
 (

s
e

c
)

10 texture2Ds

15 texture2Ds

20 texture2Ds

25 texture2Ds

30 texture2Ds

Swap iteration should be reset at the spot!

technology
from seed

Local optimizations:
Remap method

• For the applications which calculation size decreases,

– Flow-model should be mapped again after the input texture sizes are

reduced

– Applying a threshold number of iterations for Swap, flow-model is mapped

again at the spot

University of Murcia

27-05-2008Stream-based concurrent computational models and programming tools31

Remap method

technology
from seed

Local optimizations:

LU decomposition

(A)

(A)

(C)

(C)

n 10a 11a
R G B A

01a 12a 13a
R G B A

02a 03a(A) Normalization of diagonal elements

(B) Orthogonalization

(C) Normalization

University of Murcia

27-05-2008Stream-based concurrent computational models and programming tools32

(B)
(B)

(D)

Program

Elements previously calculated are forwarded to the

output data stream without any calculation

technology
from seed

Caravela Platform：：：：
Applying remap method to LU decomposition

• GeForce7300
– Remap flow-model every 1500 Swap iterations

• GeForce7900
– Remap flow-model every 2000 Swap iterations

0

50

100

150

200

250

1000 2000 3000 4000 5000

Swap only Remapping

University of Murcia

27-05-2008Stream-based concurrent computational models and programming tools33

1000 2000 3000 4000 5000
Matrix size (NxN)

(a) GeForce7300

0

50

100

150

200

3000 4000 5000 6000 7000 8000

Matrix size (NxN)

Swap only Remapping

(b) GeForce7900

• Reduction of 80% in execution time
– Remap method further improves

performance in the top of the swap
mechanism

technology
from seed

Remote execution:

Meta-pipeline

• Executing the flow-model in a remote machine:

– Sending input data to the remote machine,

– receiving output data from the remote machine,

– scheduling the execution

Pipeline-model

University of Murcia

27-05-2008Stream-based concurrent computational models and programming tools34

Meta-pipeline
Map to worker machine network

Caravela worker machine network

technology
from seed

Remote execution:
Pipeline model

• I/O ports of the Pipeline-model
– ENTRANCE port

– EXIT port

– INTERMEDIATE port

• When all input streams are
ready, flow-model is executed

INITONCE port

flowmodel0

ENTRANCE ports

University of Murcia

27-05-2008Stream-based concurrent computational models and programming tools35

ready, flow-model is executed

• Deadlock might occur if
feedback edges exist
– INITONCE port

flowmodel0

flowmodel2flowmodel1

EXIT ports

technology
from seed

Remote execution:
Extension of Caravela library

• Extended functions for Caravela library

– CARAVELA_CreatePipeline()

– CARAVELA_AddShaderToPipeline()

– CARAVELA_AttachFlowModelToShader()

– CARAVELA_ConnectIO()

University of Murcia

27-05-2008Stream-based concurrent computational models and programming tools36

During local execution: it promotes pipeline execution.
During remote execution: communication with worker servers.

– CARAVELA_Specify[InitOnce | Exit | Intermediate]Port()

– CARAVELA_ImplementPipelineModel()

– CARAVELA_SendInputDataToPipeline()

– CARAVELA_ReceiveOutputDataFromPipeline()

technology
from seed

Remote execution:
2D DWT

• 2D Discrete Wavelet Transform

– Image compression (JPEG2000), denoising, edge detection, enlarge…

∑ ∑
−

=

−

=

−
++=

1

0

1

0
1)()()2,2(

K

k

M

m
nn klmlmjkiLLLL

∑ ∑
−

=

−

=

−
++=

1

0

1

0
1)()()2,2(

K

k

M

m
nn klmhmjkiLLHL

∑ ∑
−

=

−

=

−
++=

1 1

1)()()2,2(
K M

nn khmlmjkiLLLH

HL1

HL2

HH2LH2

LL2

University of Murcia

27-05-2008Stream-based concurrent computational models and programming tools37

∑ ∑
= =

−

0 0
1

k m
nn

∑ ∑
−

=

−

=

−
++=

1

0

1

0
1)()()2,2(

K

k

M

m
nn khmhmjkiLLHH

HH1LH1

2 decomposition level

technology
from seed

Remote execution:
2D DWT

Level 1 Flow-model

S=LL0

LL1
HL1, LH1, HH1

Level 2 Flow-model

void main()
{
float delta = 1/NUMDATA;
vec4 tmp, tmp0, tmp1, result;
vec2 coord = gl_TexCoord[0].xy;
vec2 caux; int i;
coord += coord;
caux = coord;
// horizontal direction
for (i=0; i<4; i++, coord.y += delta){

tmp.x = texture2D(CaravelaTex0, coord).x;
coord.x += delta;
tmp.y = texture2D(CaravelaTex0, coord).x;
coord.x += delta;

University of Murcia

27-05-2008Stream-based concurrent computational models and programming tools38

LL2
HL2, LH2, HH2

Level 3 Flow-model

LL3
HL3, LH3, HH3

Level N Flow-model

LLn
HLn, LHn, HHn

tmp.y = texture2D(CaravelaTex0, coord).x;
coord.x += delta;
tmp.z = texture2D(CaravelaTex0, coord).x;
coord.x += delta;
tmp.w = texture2D(CaravelaTex0, coord).x;
tmp0[i] += dot(tmp, const0);
tmp1[i] += dot(tmp, const1);
coord.x = caux.x;

}
// vertical direction
result.x = dot(tmp0, const0);
result.y = dot(tmp0, const1);
result.z = dot(tmp1, const0);
result.w = dot(tmp1, const1);
// LL sub-band stream
gl_FragData[0] = result;
// LH, HL and HH sub-bands stream
gl_FragData[1] = result;

}

technology
from seed

Remote execution:
PipelineModelCreator tool

University of Murcia

27-05-2008Stream-based concurrent computational models and programming tools39

technology
from seed

Future Work

• MPI + flow-model = CaravelaMPI

• Caravela platform operated in command line mode (operating system)

• Attach other hardware platforms to the Caravela platform (co-
processors on FPGAs,….)

University of Murcia

27-05-2008Stream-based concurrent computational models and programming tools40

processors on FPGAs,….)

• Test Meta-Pipeline with large real problems

– Japan-Cyprus-Portugal

technology
from seed

Publications

• Papers

1. Shinichi Yamagiwa, Leonel Sousa, "Caravela: A Novel Environment for stream-based distributed
computing", IEEE Computer Magazine, May 2007, pp.76-83

2. Shinichi Yamagiwa, Leonel Sousa, “Design and implementation of a stream-based distributed
computing platform using graphics processing units”, ACM International Conference on Computing
Frontier, May 2007

3. Shinichi Yamagiwa, Leonel Sousa, Diogo Antão, “Data buffering optimization methods toward a
uniform programming interface for GPU-based applications”, ACM International conference of
Computing Frontier, May 2007

4. Shinichi Yamagiwa, Leonel Sousa, Tomas Brandao, "Meta-Pipeline: A new execution mechanism for
distributed pipeline processing", 6th International Symposium on Parallel and Distributed Computing

University of Murcia

27-05-2008Stream-based concurrent computational models and programming tools41

4. Shinichi Yamagiwa, Leonel Sousa, Tomas Brandao, "Meta-Pipeline: A new execution mechanism for
distributed pipeline processing", 6th International Symposium on Parallel and Distributed Computing
(ISPDC 2007), August 2007

5. Shinichi Yamagiwa and Diogo Ricardo Cardoso Antao and Leonel Sousa, Design and
Implementation of a Graphical User Interface for Stream-based Distributed Computing, the IASTED
International Conference on Parallel and Distributed Computing and Networks (PDCN 2008), Feb.
2008

• Book chapter

1. Concurrent and Parallel Computing: Theory, Implementation and Applications, chapter 1, NOVA
Publishers, May 2008

• Patent

1. “Program execution method applied to data streaming in distributed heterogeneous computing
environment”, Portuguese national patent

technology
from seed

technology

For more detailed information,

please visit:

http://www.caravela-gpu.org

University of Murcia

11-04-2008Caravela: A High Performance Distributed Stream-based Computing Platform 42

technology
from seed

