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1. Many-core platforms based on GPU’s

1. GPGPU: Computation Models and Programming tools

1. Stream based computing

2. Massively parallelism based on Multithreading

3. APIs and Programming tools
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3. APIs and Programming tools

2. Caravela Project

1. Flow-Model and Caravela Platform

2. Caravela Tools for programming GPUs (locally and remotely)

3. Optimizations for current GPUs/Systems

4. Future Work
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Graphics Processing Units

• Graphics Processing Units (GPUs)

– Available in all computers

– Unused high computational capacity 

– Manycore processing systems
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GPGPU - General-Purpose computation on GPUs

• Usage of GPUs for GPGPU

– Graphics APIs are not tuned for general-purpose applications

– Programmer has to learn irrelevant graphics concepts

– Data copy from main memory to video memory is slow
• PCI-E  system bus 
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GPU Structure
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Textures for objects
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• Stream-based processing with four elements
– Vertex processor: x, y, z, w
– Pixel processor: operates on pixel data in a vector approach , issuing instructions to operate 

concurrently on the multiple color components of a pixel -R(ed), G(reen), B(lue) and A(lpha)

• Vertex and Pixel processors are programmable
– DirectX assembly language and HLSL
– OpenGL Shader Language (GLSL)

Standardized 

Referential Axes

Map the vertices of 

objects into standard 

referential axes 

Rasterizer

Interpolates the vertices, 

creating planes

Apply texture to objects
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Texture mapping example

ps_2_0

def c0, 0.5,0.5,0.5,0
def c1, 1,1,1,1

dcl_2d s0
dcl_2d s1

dcl t0.xy

α

Coordinates of textures

DirectX assembly language

Pixel Shader Model 2.0
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dcl t0.xy
dcl t1.xy

texld r2, t0, s0
texld r3, t1, s1

mov r5, c1
sub r5, r5, c0
mul r2, r2, r5
mad r4, r3, c0, r2

mov oC0, r4

P’ = Pa(1-α)+Pbα

Alpha blending

Da Vinci

Mona Lisa

Coordinates of textures

Pa(1-α)

Pa(1-α)+Pbα

Output of results
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GPU Performance

• GPU drastically improves performance in the last 5 years

GeForce7000

GeForce7000-512

GeForce7100

GeForce8000
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GPGPU applications

• GPU supports general purpose processing (data-parallelism)
– with high number of arithmetic calculations per memory access

• Examples (www.gpgpu.org)
– Physics simulation
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– Physics simulation

– Signal processing

– Computational geometry

– Database management

– Computational biology

– Computational finance

– Computer vision

– …..



technology
from seed

GPU architecture

GeForce 8800  [source: NVIDIA]
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GPU architecture 
Case study: GeForce 8800

330 Gflop/s (issue rate for MAC), 86.4 GB/s peak mem. bandwidth

• 128 stream processors: 8 clusters of 16 SPs

• SPs aren't vertex or pixel shaders: generalized floating-point 
processors capable of operating on vertices, pixels, or any data

– most GPUs operate on pixel data in a way (R,G,B,A) but the G80's SP is scalar

• SPs are clocked at a relatively speedy 1.35GHz, while most of the rest of the 

University of Murcia

27-05-2008Stream-based concurrent  computational models and programming tools9

• SPs are clocked at a relatively speedy 1.35GHz, while most of the rest of the 
chip is clocked independently at 575MHz

– GeForce 8800: a tremendous amount of raw floating-point processing power

• The cores in a cluster share:
– local memory (L1) 

– banks of specialized hardware (TF) for implementing texture fetch operations

• High performance access to the frame buffer memory (FB)
– to store both texture  data and rendered images
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Computation Models: 
Stream processing

• Input data is streamed in from one or more input arrays,

processed by a stream kernel, and then streamed out to

one or more output arrays

• A stream kernel can be thought of as:

– function that is applied in parallel to every element of one or more

University of Murcia

– function that is applied in parallel to every element of one or more
input arrays and produces one or more output arrays

27-05-2008Stream-based concurrent  computational models and programming tools10

Cache

ALU
Control

ALU

ALU

ALU
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Computation Models: 
Stream processing

• Applications can easily be limited by memory bandwidth
– Restrictions: memory accesses oriented to pixel processing

– Only gather: can read data from other pixels

ALU
Control

Cache
ALU ALU ... ALU

Control

Cache
ALU ALU ... …
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– No scatter: (Can only write to one pixel)

27-05-2008Stream-based concurrent  computational models and programming tools11
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…

DRAM

ALU
Control

Cache
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ALU
Control
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Computation Models: 
Multithreading

• SPMD + SIMD Model

– Data-parallel portions of an
application are executed as
kernels which run in parallel on
many threads

• A kernel is executed as a grid of

Host

Kern
el 1

Device

Grid 1

Block
(0, 0)

Block
(1, 0)

Block
(2, 0)

Block
(0, 1)

Block
(1, 1)

Block
(2, 1)

Compute Unified Device Architecture (CUDA): NVIDIA proprietary
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• A kernel is executed as a grid of

thread blocks

– A thread block is a batch of threads
that can cooperate with each other
through shared memory

• Two threads from two different

blocks cannot cooperate
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Thread
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Computation Models: 
Multithreading

• Massive parallelism for GPUs

to hide memory access and

pipeline latencies
– For instance, a single processing

element in a GPU might run several

threads at once and switch between

them whenever a high-latency

Grid

(0, 0)

Shared Memory

Thread (0, 0)

Registers

Thread (1, 0)

Register

s

Block (1, 0)

Shared Memory

Thread (0, 0)

Register

s

Thread (1, 0)

Register

s
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them whenever a high-latency

operation is encountered.

• Read/write per-thread

• registers, local memory

• Read/write per-block

• shared memory

• Read/write per-grid

• global memory
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APIs and Programming tools:
CUDA

• CUDA API is an extension to the C language

– extensions to target portions of the code for execution on the
device

– a runtime library split into

• a common component providing built-in vector types and a

University of Murcia

• a common component providing built-in vector types and a
subset of the C runtime library supported in both host and device

codes

• A host component to control and access one or more devices
from the host

• A device component providing device-specific functions
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APIs and Programming tools:
Heterogenous Multi-core Parallel 
Programming (HMPP)

• The GPU is always viewed as a 

computing device that:

– is a coprocessor to the CPU or host

– has its own DRAM (device memory)

• Approach similar to OpenMP, but 

designed to handle hardware 

University of Murcia

designed to handle hardware 

accelerators

– application source code portable

• sequential binary -> traditional compiler

• CAPS HMPP is:

– a set of compiler directives and runtime 
software for multicore programming in C
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Caravela:
Motivation

• A new execution model for local and remote computation is required

• Stream computing is the expected for the next high performance
computing method

• GPU never touches resources on host machine using stream-based
computation, so security can be guaranteed
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Caravela: A new platform for distributed computing

Stream-based computation on GPU can be applied to distributed 

computing
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Caravela Project:
Project Roadmap

Flow-model

GPU

Basic Concept

Distributed Computing
Implementation dependent

Caravela Platform
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Pipeline-model

GPU

Emulator

Execution Optimization
on GPU

Algorithm development
for different applications

Performance Optimization

Meta-pipeline

Task Scheduling in

Distributed environment

Dedicated Hardware
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Caravela Platform:
Flow-model

• Memory effect by introducing
feedback

• Program does not touch other
resources beyond I/O streams

• Flow-model encapsulates a
task object
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task object

• Flow-model can be fetched
from remote site.

Caravela provides a set of tools

for executing a flow-model unit.

FlowModelCreator and Caravela Library
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Caravela Platform:
Runtime Environment

• Resource definition in Caravela library

– Machine: has Adapter(s)

– Adapter: has Shader(s)

– Shader: Pixel Processor(s)

• Programming steps in application

1. Acquire shaders
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1. Acquire shaders

2. Define flow-models

3. Map flow-models to shaders

4. Setup input streams

5. Fire flow-models

6. Get output data streams
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Caravela Platform：：：：
Runtime for remote execution

• Remote execution runtime supports:

– Worker server: executes flow-models.

– Broker server: maintains routing information to worker servers.

Broker
Map and execute

Flow-model 
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Broker

Worker Worker

Application machine

Parent BrokerParent broker

Parent broker

Request Forwarding

Request Forwarding

Map and execute

Flow-model 

Result
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Caravela Platform:
Caravela library

• Initialization and Finalization
CARAVELA_Initialize(RUNTIME), CARAVELA_Finalize(RUNTIME)

• Flow-model creation
flow-model � CARAVELA_CreateFlowModelFromFile(filename)

• Machine creation
machine � CARAVELA_CreateMachine(machine_type)

• Getting Shader
shader � CARAVELA_QueryShader(machine)
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shader � CARAVELA_QueryShader(machine)

• Mapping Flow-model into Shader
fuse � CARAVELA_MapFlowModelIntoShader(shader, flow-model)

• Initialization for input data stream
input data stream buffer � CARAVELA_GetInputData(flow-model)

• Execution of Flow-model
CARAVELA_FireFlowModel(fuse)

• Getting output data stream
output data stream buffer � CARAVELA_GetOutputData()

machine_type is “REMOTE” for remote execution.
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Caravela Platform:
1D FIR Filter
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void main(){

int i,j;

float inv = 1.0/Const4.x;

vec4 res = vec4(0.0,0.0,0.0,0.0);

vec2 coord = gl_TexCoord[0].xy;

vec4 data0 = texture2D(CaravelaTex0, coord);

coord.x+=inv;

vec4 data1 = texture2D(CaravelaTex0, coord);

coord.x+=inv;

vec4 data2 = texture2D(CaravelaTex0, coord);

// for x value

for( j=0; j<4; j++ ){

void main( in float2 t0:  TEXCOORD0,

out float4 oC0: COLOR0){

int j;

float inv = 1.0/Const4.x;

float4 res = 0;

float2 coord = t0;

float4 data0 = tex2D(CaravelaTex0, coord);

coord.x += inv;

float4 data1 = tex2D(CaravelaTex0, coord);

coord.x += inv;

float4 data2 = tex2D(CaravelaTex0, coord);

// for x value

x b
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for( j=0; j<4; j++ ){

res.x += data0[j] * Const0[j];

res.x += data1[j] * Const1[j];

}

// for y value

for(j=1;j<4;j++)

res.y += data0[j] * Const0[j-1];

res.y += data1[0] * Const0[3];

for( j=1; j<4; j++ )

res.y += data1[j] * Const1[j-1];

res.y += data2[0] * Const1[3];

...

gl_FragData[0] = res;

}

// for x value

for( j=0; j<4; j++ )

res.x += data0[j] * taps[j][0];

for( j=0; j<4; j++ )

res.x += data1[j] * taps[j][1];

// for y value

for(j=1;j<4;j++)

res.y += data0[j] * taps[j-1][0];

res.y += data1[0] * taps[3][0];

for( j=1; j<4; j++ )

res.y += data1[j] * taps[j-1][1];

res.y += data2[0] * taps[3][1];

oC0 = res;

}

DirectX (HLSL)
OpenGL (GLSL)

y
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Caravela Platform:
Experimental Results

Machine1 Machine2

CPU
AMD Opteron 2GHz

2GB DDR400

Intel CoreDuo 1.66GHz

1GB DDR2
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CPU
2GB DDR400 1GB DDR2

GPU
NVIDIA GeForce 7300GS

256MB DDR

NVIDIA GeForce Go 7400

128MB DDR2
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Caravela Platform:
Experimental Results

8
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Caravela (DX9) Caravela (OpenGL) CPU

• 1D FIR Filter 

• Input：1M samples ×30 iterations

• S= 4-10 times regarding to CPU
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Local Optimizations:
Recursive processing

• Recursive processing with flow-model

– Output streams must be copied to input streams
→ performance degrades due to the copy overhead

• Example: IIR Filter

– Output “y” is feed-forwarded to input recursively.
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Local optimizations:
Swap mechanism

• Swap mechanism: Optimization for recursive I/O

– Pair � CARAVELA_CreateSwapIoPair(input_index, output_index)

– CARAVELA_SwapFlowmodelIo(Pair)

Pair = CARAVELA_CreateSwapIoPair(0,1)

While(…){
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CARAVELA_SwapFlowmodelIo(pair)

Fire flow-model…

While(…){

}



technology
from seed

Local optimizations:
Implementation of Swap mechanism

Conventional method Swap mechanism
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Output stream copied 

VRAM →CPU memory and

CPU memory → VRAM

Exchanges pointers of I/O 
buffers in the GPU side.
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Local optimizations:
Swap mechanism

• OpenGL is used as the graphics 
runtime:

– CARAVELA_SwapFlowmodelIO() for 
swap mechanism

• Swap:

Improves performance 55-60% E
x
e
c
u
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n
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e
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s
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c
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Swap mechanism is an 

effective optimization 

technique.
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Local optimizations:

Remap method

• I/O overhead of GPGPU application

– Copy operation among CPU memory-VRAM

– Overhead in GPU at writing output stream to VRAM
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– Overhead in Pixel processor at reading textures

Smaller texture size may result in better performance.
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Local optimizations:

Remap method

• Iterating with 3000x3000 texture 
input and applying Swap mechanism

– Spot depending on the number of 
iterations of Swap mechanism

– GeForce7300: 1500 iterations
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– GeForce7900: 2000 iterations
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Swap iteration should be reset at the spot!
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Local optimizations:
Remap method

• For the applications which calculation size decreases,

– Flow-model should be mapped again after the input texture sizes are

reduced

– Applying a threshold number of iterations for Swap, flow-model is mapped

again at the spot
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Remap method
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Local optimizations:

LU decomposition

(A)

(A)

(C)

(C)

n 10a 11a
R G B A

01a 12a 13a
R G B A

02a 03a(A) Normalization of diagonal elements

(B) Orthogonalization

(C) Normalization
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(B)
(B)

(D)

Program

Elements previously calculated are forwarded to the  

output data stream without any calculation
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Caravela Platform：：：：
Applying remap method to LU decomposition

• GeForce7300
– Remap flow-model  every 1500 Swap iterations

• GeForce7900
– Remap flow-model  every 2000 Swap iterations

0

50

100

150

200

250

1000 2000 3000 4000 5000

Swap only Remapping
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1000 2000 3000 4000 5000
Matrix size (NxN)

(a) GeForce7300

0

50
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200

3000 4000 5000 6000 7000 8000

Matrix size (NxN)

Swap only Remapping

(b) GeForce7900

• Reduction of 80% in execution time
– Remap method further improves 

performance in the top of the swap 
mechanism



technology
from seed

Remote execution: 

Meta-pipeline

• Executing the flow-model in a remote machine:

– Sending input data to the remote machine,

– receiving output data from the remote machine,

– scheduling the execution

Pipeline-model
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Meta-pipeline
Map to worker machine network

Caravela worker machine network



technology
from seed

Remote execution: 
Pipeline model

• I/O ports of the Pipeline-model
– ENTRANCE port

– EXIT port

– INTERMEDIATE port

• When all input streams are 
ready, flow-model is executed

INITONCE port

flowmodel0

ENTRANCE ports
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ready, flow-model is executed

• Deadlock might occur if 
feedback edges exist
– INITONCE port

flowmodel0

flowmodel2flowmodel1

EXIT ports
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Remote execution: 
Extension of Caravela library

• Extended functions for Caravela library

– CARAVELA_CreatePipeline()

– CARAVELA_AddShaderToPipeline()

– CARAVELA_AttachFlowModelToShader()

– CARAVELA_ConnectIO()
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During local execution: it promotes pipeline execution.
During remote execution: communication with worker servers.

– CARAVELA_Specify[InitOnce | Exit | Intermediate]Port()

– CARAVELA_ImplementPipelineModel()

– CARAVELA_SendInputDataToPipeline()

– CARAVELA_ReceiveOutputDataFromPipeline()
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Remote execution: 
2D DWT

• 2D Discrete Wavelet Transform

– Image compression (JPEG2000), denoising, edge detection, enlarge…
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Remote execution: 
2D DWT

Level 1 Flow-model

S=LL0

LL1
HL1, LH1, HH1

Level 2 Flow-model

void main() 
{
float delta = 1/NUMDATA;
vec4 tmp, tmp0, tmp1, result;
vec2 coord = gl_TexCoord[0].xy;
vec2 caux;  int i;
coord += coord;
caux = coord;
// horizontal direction
for (i=0; i<4; i++, coord.y += delta){

tmp.x = texture2D(CaravelaTex0, coord).x;
coord.x += delta;
tmp.y = texture2D(CaravelaTex0, coord).x;
coord.x += delta;
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LL2
HL2, LH2, HH2

Level 3 Flow-model

LL3
HL3, LH3, HH3

Level N Flow-model

LLn
HLn, LHn, HHn

tmp.y = texture2D(CaravelaTex0, coord).x;
coord.x += delta;
tmp.z = texture2D(CaravelaTex0, coord).x;
coord.x += delta;
tmp.w = texture2D(CaravelaTex0, coord).x;
tmp0[i] += dot(tmp, const0);
tmp1[i] += dot(tmp, const1);
coord.x = caux.x;

}
// vertical direction
result.x = dot(tmp0, const0);
result.y = dot(tmp0, const1);
result.z = dot(tmp1, const0);
result.w = dot(tmp1, const1);
// LL sub-band stream
gl_FragData[0] = result;
// LH, HL and HH sub-bands stream
gl_FragData[1] = result;

}
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Remote execution: 
PipelineModelCreator tool
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Future Work

• MPI + flow-model = CaravelaMPI

• Caravela platform operated in command line mode (operating system)

• Attach other hardware platforms to the Caravela platform (co-
processors on FPGAs,….)
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processors on FPGAs,….)

• Test Meta-Pipeline with large real problems

– Japan-Cyprus-Portugal 
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