
Conference title 1

Multicore Programming Case Studies:

Cell BE and NVIDIA Tesla
Meeting on Parallel Routine Optimization and Applications

May 26-27, 2008

Juan Fernández (juanf@ditec.um.es)

Gregorio Bernabé

Manuel E. Acacio

José L. Abellán

Joaquín Franco

Introduction
Motivation

• Monolithic Processors

• Single-core processors

• Ever-increasing hardware

design complexity

• Modular Processors

• Multi-core processors

• Software development and

optimization complexity

2Meeting on Parallel Routine Optimization and Applica tions – May 26-27, 2008

ILP
Clock

Frequency

Memory

Latency

Power
Consumption

Hardware

Parallel

Programming

Parallelizing

Compilers

Speedup
Legacy

Software

Software

Introduction
Challenges

• Technological constraints

• Simpler processing cores

– Less transistors devoted to control logic and storage

– Lack of branch prediction and other aggressive speculative execution techniques

– Limited amount of on-chip memory per core (memory size scales at a slower rate)

• Limited amount of off-chip bandwidth

Meeting on Parallel Routine Optimization and Applica tions – May 26-27, 2008 3

• Limited amount of off-chip bandwidth

• Software constraints

• Complexity of developing and optimizing new parallel applications

• Difficulty to build new compilers to automatically extract parallelism

• Actual fraction of ideal performance that can be achieved with real applications

• Migration path for legacy software built atop MPI, OpenMP, Cray Shmem, etc.

Introduction
Goal

• Two multicore platforms are concentrating an enormous

attention due to their tremendous potential in terms of

sustained performance: Cell BE and NVIDIA GPGPUs

• Common denominator is a non-traditional programming model

• In this talk we try to provide some insight into their program-

Meeting on Parallel Routine Optimization and Applica tions – May 26-27, 2008 4

• In this talk we try to provide some insight into their program-

ming models along with an overview of their most outstanding

architectural features

Introduction
Target architectures

• Cell Broadband Engine

• Jointly developed by Sony (PS3), Toshiba and IBM

• Heterogeneous multicore processor specifically designed to exploit not only thread-

level parallelism but also SIMD parallelism

• Peak performance of 204.8 Gflops (SP) and 14.64 Gflops (DP)

• Compute Unified Device Architecture (CUDA)

Meeting on Parallel Routine Optimization and Applica tions – May 26-27, 2008 5

• Compute Unified Device Architecture (CUDA)

• Hardware and software architecture for managing computations on GPUs

– CUDA-enabled devices can be seen as massively-threaded processors with on-board memory

• No need to map algorithms and data to a graphics API

• Common to NVIDIA Geforce 8 series, Quadro FX 5600/4600, Tesla C870/D870/S870

• Peak performance of 518 Gflops (SP) for the NVIDIA Tesla C870

Agenda

Introduction

Cell Broaband Engine Architecture and Programming

CUDA Architecture and Programming

Comparison

Meeting on Parallel Routine Optimization and Applica tions – May 26-27, 2008 6

Comparison

Concluding remarks

Agenda

Introduction

Cell Broaband Engine Architecture and Programming

CUDA Architecture and Programming

Comparison

Meeting on Parallel Routine Optimization and Applica tions – May 26-27, 2008 7

Comparison

Concluding remarks

Cell Broadband Engine
Architecture

Meeting on Parallel Routine Optimization and Applica tions – May 26-27, 2008 8

• Heterogeneous multicore processor

• 1 x Power Processor Element (PPE)

– 64-bit Power-architecture-compliant processor

– Dual-issue, in-order execution, 2-way SMT processor

– PowerPC Processor Unit (PPU)

Cell Broadband Engine
Architecture

Meeting on Parallel Routine Optimization and Applica tions – May 26-27, 2008 9

– PowerPC Processor Unit (PPU)

– 32 KB L1 IC, 32 KB L1 DC, VMX unit

– PowerPC Processor Storage Subsystem (PPSS)

– 512 KB L2 Cache

– General-purpose processor to run OS and control-intensive code

– Coordinates the tasks performed by the remaining cores

Cell Broadband Engine
Architecture

• Heterogeneous multicore processor

• 8 x Synergistic Processing Element (SPE)

– Dual-issue, in-order execution, 128-bit SIMD processors

– Synergistic Processor Unit (SPU)

– SIMD ISA (four different granularities)

Meeting on Parallel Routine Optimization and Applica tions – May 26-27, 2008 10

– SIMD ISA (four different granularities)

– 128 x 128-bit SIMD register file

– 256 KB Local Storage (LS) for code/data

– Memory Flow Controller (MFC)

– Memory-mapped I/O registers (MMIO Registers)

– DMA Controller: commands to transfer data in and out

– Custom processors specifically designed for data-intensive code

– Provide the main computing power of the Cell BE

Cell Broadband Engine
Architecture

• Element Interconnect Bus (EIB)

– Interconnects PPE, SPEs, and the memory and I/O interface controllers

– 4 x 16 Byte-wide rings (2 clockwise and 2 counterclockwise)

– Up to three simultaneous data transfers per ring

– Shortest path algorithm for transfers

Meeting on Parallel Routine Optimization and Applica tions – May 26-27, 2008 11

• Memory Interface Controller (MIC)

– 2 x Rambus XDR I/O memory channels

(accesses on each channel

of 1-8, 16, 32, 64 or 128 Bytes)

• Cell BE Interface (BEI)

– 2 x Rambus FlexIO I/O channels

• SPEs are intended to run threads spawned by the PPE

• PPE and SPEs communicate and synchronize using a bunch of

hardware-supported mechanisms:

• PPE- or SPE-initiated, blocking or non-blocking DMA transfers between main

memory and an SPE’ s LS (GET) or vice versa (PUT) up to a maximum of 16KB

Cell Broadband Engine
Programming

Meeting on Parallel Routine Optimization and Applica tions – May 26-27, 2008 12

memory and an SPE’ s LS (GET) or vice versa (PUT) up to a maximum of 16KB

• Mailboxes support the exchange of 32-bit messages among SPEs and PPE

(4-entry SPU Read Inbound Mailbox / SPU Write Outbound Mailbox)

• Signals allow SPEs to collect 32-bit incoming notifications

(SPU Signal Notification 1 / SPU Signal Notification 2)

• Read-modify-write atomic operations enable simple transactions on single
words residing in main memory (e.g. atomic_add_return)

Cell Broadband Engine
Programming

• Usually SPEs run the same code but on different data (SPMD)

• Other collaboration schemes are feasible

• Function offload

• Device extension

• Pipeline

Meeting on Parallel Routine Optimization and Applica tions – May 26-27, 2008 13

• Pipeline

• Shared-memory multiprocessor

• Critical issues

• Data movement

• Load balancing

• Separate programs written in C/C++ for PPE and SPEs

(ADA and Fortran also supported as of SDK v3.0)

• PPE program

– Vector data types and intrinsics to use the VMX unit (e.g. vector float or

vec_add)

Cell Broadband Engine
Programming

Meeting on Parallel Routine Optimization and Applica tions – May 26-27, 2008 14

– Library function calls to manage threads and perform communication and
synchronization operations (e.g. spe_context_run , spe_mfcio_put ,

spe_in_mbox_write)

• SPE program

– Vector data types and intrinsics (e.g. vector float or spu_add)

– SP FP fully pipelined in 4-way SIMD fashion while DP FP only partially pipelined

– Library function calls to perform communication and synchronization operations
(e.g. mfc_get , spu_read_in_mbox)

• SPE Program (cont.)

– BLAS, LAPACK and SIMD Math libraries

– Compiler directives to tackle with a number of memory alignment issues and
branch hinting (e.g. __attribute__(aligned(16)) or __builtin_expect)

– Manual optimizations

– Double-buffering DMA data transfers to overlap communication and computation

Cell Broadband Engine
Programming

Meeting on Parallel Routine Optimization and Applica tions – May 26-27, 2008 15

– Double-buffering DMA data transfers to overlap communication and computation

– SPE code SIMDization to fully exploit SPE architecture

– Reordering instruction scheduling to maximize dual-issue cycles

Cell Broadband Engine
Programming example

// LS buffers for DMA transfers must be aligned

control_block cb __attribute__(aligned (128)) ;

int vecx[MAX_VECTOR] __attribute__(aligned (128)) ;

int vecy[MAX_VECTOR] __attribute__(aligned (128)) ;

// SPE code for saxpy_parallel

int main(uint64_t speid, uint64_t id, EA cb_ptr)

{

Meeting on Parallel Routine Optimization and Applica tions – May 26-27, 2008 16

{

. . .

/* copy control block from main memory to LS buffer */

mfc_get (&cb, cb_ptr, sizeof(control_block), DMA_TAG, 0, 0);

mfc_write_tag_mask (1<<DMA_TAG);

mfc_read_tag_status_all ();

/* wait for PPE approval to proceed */

unsigned int in_mbox_data = spu_read_in_mbox ();

assert(in_mbox_data == DMA_START);

. . .

Cell Broadband Engine
Programming example

/* copy vecx and vecy from main memory to LS buffers */

mfc_get (&vecx, cb.vecx_ptr, MAX_VECTOR * sizeof(float), DMA_TAG, 0, 0);

mfc_get (&vecy, cb.vecxy_ptr, MAX_VECTOR * sizeof(float), DMA_TAG, 0, 0);

mfc_write_tag_mask (1<<DMA_TAG);

mfc_read_tag_status_all ();

/* compute vecy using non-SIMDized code (saxpy_spu BLAS function available) */

for(int i =0; i < cb.n ; i ++) { vecy = cb.alpha * vecx [i] + vecy [i];}

Meeting on Parallel Routine Optimization and Applica tions – May 26-27, 2008 17

for(int i =0; i < cb.n ; i ++) { vecy = cb.alpha * vecx [i] + vecy [i];}

/* copy vecy back to main memory */

mfc_put (&vecy, cb.vecy_ptr, MAX_VECTOR * sizeof(float), DMA_TAG, 0, 0);

mfc_write_tag_mask (1<<DMA_TAG);

mfc_read_tag_status_all ();

/* tell PPE we are done */

spu_write_out_mbox (DMA_END);

. . .

}

Cell Broadband Engine
Programming

• Other libraries/environments that support Cell BE programming

• Data Communications and Synchronization Library (DACS) and Accelerated

Library Framework (ALF) are included in the latest releases of the IBM SDK

• Cell Superscalar (CellS) developed at Barcelona Supercomputing Center

• Multicore Plus SDK Software developed by Mercury Computing Systems Inc.

Meeting on Parallel Routine Optimization and Applica tions – May 26-27, 2008 18

• Multicore Plus SDK Software developed by Mercury Computing Systems Inc.

• RapidMind Multicore Development Platform for AMD and Intel multicore x86

CPUs, ATI/AMD and NVIDIA GPUs and Cell BE

• Cell BE comes in different flavors

• Play Station 3

– Cheapest alternative but…

– …6 out of 8 SPEs and < 200 MB left to applications

• IBM Blade Center QS20/21/22

Cell Broadband Engine
Commercial systems

Meeting on Parallel Routine Optimization and Applica tions – May 26-27, 2008 19

• IBM Blade Center QS20/21/22

• Mercury dual Cell-based blade

• Mercury Cell-based PCI Express board

Agenda

Introduction

Cell Broaband Engine Architecture and Programming

CUDA Architecture and Programming

Comparison

Meeting on Parallel Routine Optimization and Applica tions – May 26-27, 2008 20

Comparison

Concluding remarks

Compute Unified Device Architecture
Hardware Model

• GPU as a coprocessor to CPU

• N x Multiprocessors

– M x processors execute the same

instruction on different data based on
threadId at any given clock cycle

– 32-bit read-write registers per

Device

Multiprocessor N

Multiprocessor 2

Multiprocessor 1

Shared Memory

Instruction
Registers

…
Registers Registers

Meeting on Parallel Routine Optimization and Applica tions – May 26-27, 2008 21

– 32-bit read-write registers per

processor

– Parallel data cache (SHM) shared by all

processors

– Read-only constant and texture caches

shared by all processors

– NVIDIA Tesla C870: N=16 and M=8,

8192 registers and 16 KB of SHM per

multiprocessor (16 memory banks)

Device memory

Instruction
Unit

Processor 1 …Processor 2 Processor M

Constant
Cache

Texture
Cache

Compute Unified Device Architecture
Hardware Model

• GPU as a coprocessor to CPU

• Device memory (on-board)

– Global, constant and texture memory

optimized for different usages

– Written to or read from by CPU

Device

Multiprocessor N

Multiprocessor 2

Multiprocessor 1

Shared Memory

Instruction
Registers

…
Registers Registers

Meeting on Parallel Routine Optimization and Applica tions – May 26-27, 2008 22

– Persistent through the life of the

application

– NVIDIA Tesla C870: 1.5 GB of device

memory

Device memory

Instruction
Unit

Processor 1 …Processor 2 Processor M

Constant
Cache

Texture
Cache

Compute Unified Device Architecture
Execution Model

• Kernel: portion of application run by

many threads in parallel

• Thread block: 1D-, 2D- or 3D-array of
threads (threadId)

– Assigned to a single multiprocessor

– Cooperation (SHM)

Host

Kernel
1

Kernel

Device

Grid 1

Block
(0, 0)

Block
(1, 0)

Block
(2, 0)

Block
(0, 1)

Block
(1, 1)

Block
(2, 1)

Grid 2

Meeting on Parallel Routine Optimization and Applica tions – May 26-27, 2008 23

– Cooperation (SHM)

– Synchronization (__syncthreads())

• Grid: 1D- or 2D-array of thread blocks

– Thread blocks can be assigned to

different multiprocessors

– Threads from different blocks cannot

synchronize their execution but at

kernel launches

Kernel
2

Block (1, 1)

Thread
(0, 1)

Thread
(1, 1)

Thread
(2, 1)

Thread
(3, 1)

Thread
(4, 1)

Thread
(0, 2)

Thread
(1, 2)

Thread
(2, 2)

Thread
(3, 2)

Thread
(4, 2)

Thread
(0, 0)

Thread
(1, 0)

Thread
(2, 0)

Thread
(3, 0)

Thread
(4, 0)

Compute Unified Device Architecture
Memory Model

• Each thread can:

• Read/write per-thread registers

• Read/write per-block shared memory

• Read/write per-grid global memory

• Each thread can also:

Grid

Block (0, 0)

Shared Memory

Thread (0, 0)

Registers

Thread (1, 0)

Registers

Block (1, 0)

Shared Memory

Thread (0, 0)

Registers

Thread (1, 0)

Registers

Meeting on Parallel Routine Optimization and Applica tions – May 26-27, 2008 24

• Read/write per-thread local memory

(register spilling)

• Read only per-grid constant memory

• Read only per-grid texture memory

Constant
Memory

Texture
Memory

Global
Memory

Local
Memory

Thread (0, 0)

Local
Memory

Thread (1, 0)

Local
Memory

Thread (0, 0)

Local
Memory

Thread (1, 0)

Host

Compute Unified Device Architecture
Execution Model

• Multiprocessors can process one or

more blocks concurrently

• Each active block is split into warps

(32 threads) and threads within a

warp are executed physically in

parallel (4 cycles)

Host

Kernel
1

Kernel

Device

Grid 1

Block
(0, 0)

Block
(1, 0)

Block
(2, 0)

Block
(0, 1)

Block
(1, 1)

Block
(2, 1)

Grid 2

Meeting on Parallel Routine Optimization and Applica tions – May 26-27, 2008 25

• Registers and SHM are split among

active threads from active blocks

• Maximum number of active blocks

depends on how many registers and

SHM the kernel requires

• High parallelism is crucial to hide

memory latency by overlapping

memory accesses with computation

Kernel
2

Block (1, 1)

Thread
(0, 1)

Thread
(1, 1)

Thread
(2, 1)

Thread
(3, 1)

Thread
(4, 1)

Thread
(0, 2)

Thread
(1, 2)

Thread
(2, 2)

Thread
(3, 2)

Thread
(4, 2)

Thread
(0, 0)

Thread
(1, 0)

Thread
(2, 0)

Thread
(3, 0)

Thread
(4, 0)

Compute Unified Device Architecture
Programming

• Memory is allocated on device memory (global memory)

• Data set is copied from main memory to device memory

• Kernel is invoked with as many threads as desired

• Next cudaThreadSynchronize() function call blocks CPU

Meeting on Parallel Routine Optimization and Applica tions – May 26-27, 2008 26

• Next function call blocks CPU

• Thereafter threads proceed in lockstep in a SIMD fashion acting

as a data-parallel computing device

• A thread execution manager handles threading automatically

• Threads are extremely lightweight: creation overhead is negligible and

context switching is essentially free

• Results are copied back from device memory to main memory

Compute Unified Device Architecture
Programming

• Programmers don’t have to write explicitly threaded code

• Data layout is the key issue and requires some explicit code

• Single program written in C/C++ with extensions for CPU and CUDA device

• Function type qualifiers (__global__ and __device__)

• Variable type qualifiers (__device__ , __shared__ and __constant__)

Meeting on Parallel Routine Optimization and Applica tions – May 26-27, 2008 27

• Variable type qualifiers (__device__ , __shared__ and __constant__)

• Four built-in variables (gridDim , blockDim , blockIdx and ThreadIdx)

• Execution configuration construct

– function<<<gridDim, blockDim, shm_size>>>(parameter _list);

• Runtime library

– Built-in vector data types (dim3), texture types, mathematical functions, type

conversion and casting functions, thread synchronization functions, device and memory
management functions (cudaMalloc() , cudaFree() and cudaMemcpy())

• CUBLAS and CUFFT libraries

Compute Unified Device Architecture
Programming example

/* compute y (cublas_saxpy function available) */

__global__ void saxpy_parallel(int n, float alpha, float *y, f loat *x)

{

int i = blockIdx.x * blockDim.x + threadIdx.x ;

if (i<n) y[i] = alpha * x[i] + y[i];

}

/* copy data from host memory to global memory */

Meeting on Parallel Routine Optimization and Applica tions – May 26-27, 2008 28

/* copy data from host memory to global memory */

cudaMemcpy(d_y, h_y, n * sizeof(float), cudaMemcpyH ostToDevice);

cudaMemcpy(d_x, h_x, n * sizeof(float), cudaMemcpyH ostToDevice);

/* Invoke SAXPY kernel (256 threads per block) */

dim3 bdim.x = 256; dim3 gdim.x = (n + gdim.x-1) / g dim.x;

saxpy_parallel<<<gdim, bdim, 0>>>(n, 2.0, x, y);

cudaThreadSynchronize();

/* copy data back from global memory to host memory */

cudaMemcpy(d_y, h_y, n * sizeof(float), cudaMemcpyD eviceToHost);

Compute Unified Device Architecture
Programming

• Single program written in C/C++ with extensions for CPU and CUDA device

• Manual optimizations

– Expose as much parallelism as possible

– Take advantage of asynchronous kernel launches and data transfers (CUDA streams)

– Maximize occupancy running as many threads per multiprocessor as possible (CUDA occupancy calc)

– Optimize memory usage

Meeting on Parallel Routine Optimization and Applica tions – May 26-27, 2008 29

– Optimize memory usage

– Use page-locked host memory

– Minimize and group data transfers across the PCIe link

– Avoid non-coalesced global memory accesses

– Maximize use of shared memory (favor access patterns with no of few bank conflicts)

– Optimize instruction usage

– Minimize use of low throughtput instructions (func() vs. __func())

– Minimize divergent warps

NVIDIA Tesla C870
Commercial systems

• NVIDIA Tesla series:

• C870: PCIe x16 board

– 16 x Multiprocessors: 8 x processor

– 518 Gflops (single precision)

– 1.5 GB 76.8 GB/s device memory

Meeting on Parallel Routine Optimization and Applica tions – May 26-27, 2008 30

– 1.5 GB 76.8 GB/s device memory

– 4 GB/s main memory

– 1.5 GB/s regular memory

– 3.1 GB/s page-locked memory

• D870: desktop (2 x C870)

• S870: 1U rack-mount chassis (4 x C870)

Agenda

Introduction

Cell Broaband Engine Architecture and Programming

CUDA Architecture and Programming

Comparison

Meeting on Parallel Routine Optimization and Applica tions – May 26-27, 2008 31

Comparison

Concluding remarks

Comparison
Cell BE and CUDA architecture and programming

Comparison

Cell BE

(IBM Blade Center QSXX)

CUDA

(NVIDIA Tesla C870)

Cost Expensive Affordable

Memory bandwidth 25.6 GB/s 3.1 GB/s
(page-locked memory)

Peak performance 204.8 Gflops (SP) 518 Gflops (SP)

-

Meeting on Parallel Routine Optimization and Applica tions – May 26-27, 2008 32

14.64 Gflops (DP) -

Learning curve Steep Smooth

Code Optimization Very Complex Complex

Debuggability Very Hard Hard

Portability None CUDA-enabled devices

Integration Easy Easy

Agenda

Introduction

Cell Broaband Engine Architecture and Programming

CUDA Architecture and Programming

Comparison

Meeting on Parallel Routine Optimization and Applica tions – May 26-27, 2008 33

Comparison

Concluding remarks

Concluding remarks
Cell BE and CUDA architecture and programming

• Multicore platforms are here to stay

• Cell BE and NVIDIA GPUs are two popular representatives

• PROS

– Tremendous potencial in terms of sustained performance

– Libraries and tools to facilitate programming and debugging coming up

Meeting on Parallel Routine Optimization and Applica tions – May 26-27, 2008 34

– Libraries and tools to facilitate programming and debugging coming up

– Easy integration into higher-level hierarchical parallel systems

• CONS

– Non-tradicional programming models

– Hard to program and debug

– Code optimization is complex

Thank you!

Any questions?

Conference title 35

May 26-27, 2008

Multicore Programming Case Studies:

Cell BE and NVIDIA Tesla
Meeting on Parallel Routine Optimization and Applications

Juan Fernández (juanf@ditec.um.es)

Gregorio Bernabé

Manuel E. Acacio

José L. Abellán

Joaquín Franco

