Introduction

Parallel algorithms Scheduling Pipeline workflows Models and real life

Algorithms and scheduling techniques for clusters and grids

Yves Robert

École Normale Supérieure de Lyon Yves.Robert@ens-lyon.fr http://graal.ens-lyon.fr/~yrobert

joint work with Olivier Beaumont, Anne Benoit, Larry Carter, Henri Casanova, Jack Dongarra, Jeanne Ferrante, Arnaud Legrand, Loris Marchal, Frédéric Vivien

Murcia, May 26, 2008

Conclusion

Introduction Parallel algorithms Scheduling Pipeline workflows Models and real life

Conclusion

Who cares about scheduling?

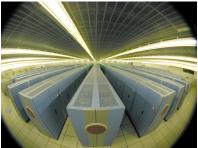
Heard it through the grapevin

Scheduling is "this thir that people in acar mia like to think about but that people who do real stuff sort or gnore"

Let's prove this wrong?!

Evolution of parallel machines

From (good old) parallel architectures to heterogeneous clusters and to large-scale grid platforms?



Parallel algorithm design and scheduling were already difficult tasks with homogeneous machines **On heterogeneous platforms, it gets worse**

Target platforms: Large-scale heterogenous platforms (networks of workstations, clusters, collections of clusters, grids, ...)

New problems

- Heterogeneity of processors (CPU power, memory)
- Heterogeneity of communication links
- Irregularity of interconnection networks
- Non-dedicated platforms

Need to adapt algorithms and scheduling strategies: new objective functions, new models

Outline

Parallel algorithms

- Independent tasks
- A simple tiling problem
- Matrix product (ScaLAPACK)
- Matrix product (master-slave)
- Iterative algorithms

2 Scheduling

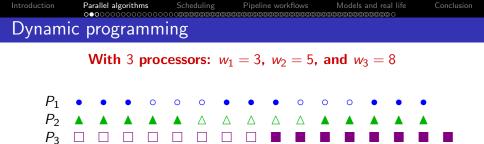
- Background: scheduling DAGs
- Packet routing
- Steady-state scheduling
- Multiple applications
- 3 Pipeline workflows
- 4 Models and real life

5 Conclusion

- *B* independent equal-size tasks • • • • •
- p processors P_1, P_2, \ldots, P_p
- $w_i = \text{time for } P_i \text{ to process a task } \bullet$

- Intuition: load of P_i proportional to its speed $1/w_i$
- Assign n_i tasks to P_i

Objective: minimize
$$T_{exe} = \max_{\sum_{i=1}^{p} n_i = B} (n_i \times w_i)$$

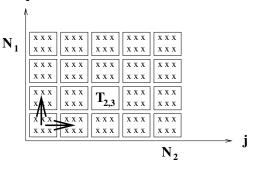


Task	<i>n</i> ₁	<i>n</i> ₂	<i>n</i> ₃	T _{exe}	Selected proc.
0	0	0	0		1
1	1	0	0	3	2
2	1	1	0	5	1
3	2	1	0	6	3
4	2	1	1	8	1
5	3	1	1	9	2
6	3	2	1	10	1
7	4	2	1	12	1
8	5	2	1	15	2
9	5	3	1	15	3
10	5	3	2	16	

- Greedy (demand-driven) would have done a perfect job
- Would even be better (possible variations in processor speeds)

Static assignment required useless thinking 🙂

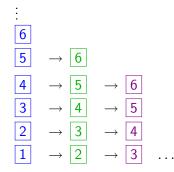
Coping with dependences



A simple finite difference problem

- Iteration space: 2D rectangle of size $N_1 \times N_2$
- Dependences between tiles $\left\{ \begin{pmatrix} 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \end{pmatrix} \right\}$

Use column-wise allocation to enhance locality



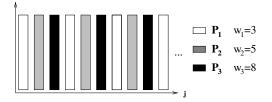
Stepwise execution

• With column-wise allocation,

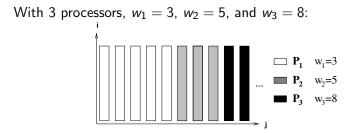
$$\mathsf{T}_{\mathsf{opt}} pprox rac{N_1 imes N_2}{\sum_{i=1}^{p} rac{1}{w_i}}.$$

- Greedy (demand-driven) allocation ⇒ **slowdown ?!**
- ullet Execution progresses at the pace of the slowest processor igodot

With 3 processors,
$$w_1 = 3$$
, $w_2 = 5$, and $w_3 = 8$:



$$T_{\text{exe}} \approx \frac{8}{3} N_1 N_2 \approx 2.67 \ N_1 N_2$$
$$T_{\text{opt}} \approx \frac{120}{79} N_1 N_2 \approx 1.52 \ N_1 N_2$$



Assigning blocks of B = 10 columns, $T_{exe} \approx 1.6 \ N_1 N_2$

- $L = \text{lcm}(w_1, w_2, \dots, w_p)$ Example: L = lcm(3, 5, 8) = 120
- P_1 receives first $n_1 = L/w_1$ columns, P_2 next $n_2 = L/w_2$ columns, and so on
- Period: block of $B = n_1 + n_2 + ... + n_p$ contiguous columns **Example:** $B = n_1 + n_2 + n_3 = 40 + 24 + 15 = 79$
- Change schedule:
 - Sort processors so that $n_1w_1 \leq n_2w_2 \leq \ldots \leq n_pw_p$
 - Process horizontally within blocks
- Optimal 🙂

Lesson learnt?

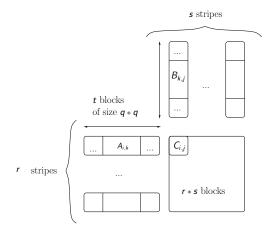
With different-speed processorswe need to think (design static schedules)

 \ldots but implementation may remain dynamic \bigcirc

Example: demand-driven allocation of blocks of adequate size

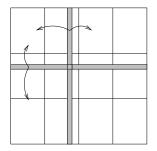
 \ldots well, in some cases it gets truly complicated \odot

- A fundamental computational kernel (the mother of parallel algorithms)
- Archetype of a tightly-coupled application
- Well-understood for *homogeneous 2D-arrays of processors*
 - Cannon algorithm
 - ScaLAPACK outer product algorithm

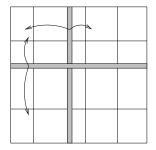


Use $q \times q$ blocks to harness efficiency of Level 3 BLAS

- C = AB on a $p_1 \times p_2$ processor grid
- Granularity: one element = one square $q \times q$ block
- Each matrix is partitioned into $p_1 \times p_2$ rectangles
- Each processor is responsible for updating its rectangle
- Outer product version: at each step,
 - a column of blocks is communicated (broadcast) horizontally
 - a row of blocks is communicated (broadcast) vertically

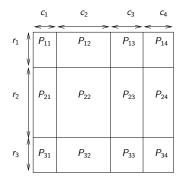


Matrix product on a 3×4 homogeneous 2D-grid



Matrix product on a 3×4 heterogeneous 2D-grid

Introduction Parallel algorithms Scheduling Pipeline workflows Models and real life Conclusion 2D load balancing (1/2)



Objective: max
$$_{r_i \times w_{ij} \times c_j \le 1} \left\{ \left(\sum_{i=1}^{p_1} r_i \right) \times \left(\sum_{j=1}^{p_2} c_j \right) \right\}$$

Maximize total number of elements processed within one time unit

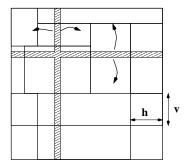
Given p processors, how to arrange them along a 2D grid of size $p_1 \times p_2 \leq p \, \ldots$

 \ldots so as to optimally load-balance the work of the processors

- Search among all possible arrangements of $p_1 \times p_2$ processors as a $p_1 \times p_2$ grid
- For each arrangement, solve optimization problem
- NP-hard 🙂

Introduction Parallel algorithms Scheduling Pipeline workflows Models and real life Conclusion

Matrix product on heterogeneous clusters



Matrix product with 13 heterogeneous processors

Optimization

How to compute the *area* and *shape* of the *p* rectangles?

- Load-balancing computations assign areas proportional to speeds
- Minimizing communication overhead choose shapes:
 - total communication volume

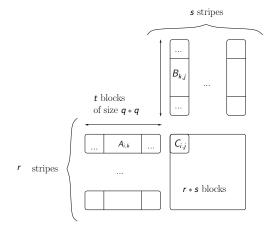
$$\hat{C} = \sum_{i=1}^{p} (h_i + v_i)$$

sum of the half perimeters of the *p* rectangles - for parallel communications:

$$\hat{M} = \max_{i=1}^{p} (h_i + v_i)$$

• Both problems NP-hard 😊

- A fundamental computational kernel (the mother of parallel algorithms)
- Archetype of a tightly-coupled application
- Well-understood for *homogeneous 2D-arrays of processors*
 - Cannon algorithm
 - ScaLAPACK outer product algorithm
- Target platforms = heterogeneous clusters
- Target usage = speed up MATLAB-client



Use $q \times q$ blocks to harness efficiency of Level 3 BLAS

Platform model

- Star network master M and p workers P_i
- X.w_i time-units for P_i to execute a task of size X
- $X.c_i$ time-units for M to send/rcv msg of size X to/from P_i
- Master has no processing capability
- Enforce one-port model

Memory limitation: only m_i buffers available for P_i \rightarrow at most m_i blocks simultaneously stored on worker

Natural memory management

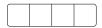
- Assign one-third for each of $\mathcal{A},\,\mathcal{B}$ and \mathcal{C}
- **Example:** $m = 21 \Rightarrow 7$ buffers per matrix

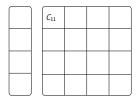
• Optimal memory management

- Find largest μ s.t. $1 + \mu + \mu^2 \le m$
- Assign 1 buffer to \mathcal{A} , μ to \mathcal{B} and μ^2 to \mathcal{C}
- **Example:** $m = 21 \Rightarrow 1$ for \mathcal{A} , 4 to \mathcal{B} and 16 to \mathcal{C}

Introduction Parallel algorithms Scheduling Pipeline workflows Models and real life Conclusion

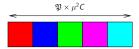
Example with m = 21





Introduction Parallel algorithms Scheduling Pipeline workflows Models and real life Conclusion Algorithm with identical workers

$$c=$$
 2, $w=$ 4.5, $\mu=$ 4, $t=$ 100, enroll $\mathfrak{P}=$ 5 workers



$\mathfrak{P} imes \mu^2 C$	$\mathfrak{P} imes \mu(A, B)$		
Yves.Robert@ens-Iyon.fr	February 8, 2008	Algorithms and scheduling techniques	35/134

Introduction	Parallel algorithms	Scheduling	Pipeline workflows	Models and real life	Conclusion
	000000000000000000000000000000000000000	000000000000000000000000000000000000000	000000000000000000000000000000000000000	തയയയയയയയയയയ റ	

Performance

• Communication-to-computation ratio:

$$\frac{2}{t} + \frac{2}{\mu} \rightarrow \frac{2}{\sqrt{m}}$$

- Close to lower bound
- Enroll $\mathfrak{P} \leq p$ workers, where

$$\mathfrak{P} = \left\lceil \frac{\mu w}{2c} \right\rceil$$

In the example, $\mathfrak{P} = \lceil 4.5 \rceil$

• Typically, $c = q^2 \tau_c$ and $w = q^3 \tau_a$ \rightarrow resource selection $\mathfrak{P} = \left[\mu q \frac{\tau_a}{2\tau_c} \right]$

• Different memory patterns for workers



- Complicated resource selection
- Complicated communication ordering
- Complicated schedule
- ... but it works fine \bigcirc (see experiments in papers)

Lesson learnt?

Can provide efficient algorithms for tightly coupled applications but requires lots of efforts

 \dots implementation cannot be demand-driven unless ready to pay huge performance degradation

Example: resource selection plus static ordering mandatory for heterogeneous platforms

Iterative algorithms

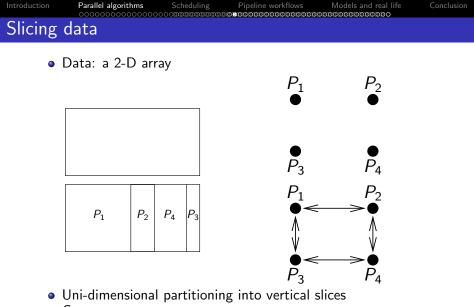
Initial data (typically, a matrix) Algorithm

- **(**) Each processor performs a computation on its data chunk
- Each processor exchanges the "border" of its data chunk of data with its neighbors
- Go back to Step 1

Questions

- Which processors should be used?
- What amount of data should they receive?
- How do we partition initial data set?

Impact of network models



- Consequences:
 - Borders and neighbors easily defined
 - 2) Constant volume of data exchanged between neighbors: D_c

Introduction	Parallel algorithms	Scheduling	Pipeline workflows	Models and real life	Conclusion
	000000000000000000000000000000000000000	000000000000000000000000000000000000000	000000000000000000000000000000000000000	000000000000000000000000000000000000000	

- Processors: P_1, \ldots, P_p
- Processor P_i executes a unit task in time w_i
- Overall amount of work D_w ; Share of P_i : $\alpha_i.D_w$ processed in time $\alpha_i.D_w.w_i$ $(\alpha_i \ge 0, \sum_j \alpha_j = 1)$
- Cost of a unit-size communication from P_i to P_j : $c_{i,j}$
- Cost of a send from P_i to its successor in the ring: $D_c.c_{i,succ(i)}$

Notations

Introduction Parallel algorithms Scheduling Pipeline workflows Models and real life Conclusion

Communications: 1-port model

A processor can:

- send at most one message at any time
- receive at most one message at any time
- send and receive a message simultaneously

- Select q processors out of p available resources
- Arrange them along a ring
- Oistribute data

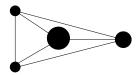
Minimize:

$$\max_{1 \le i \le p} \mathbb{I}\{i\}[\alpha_i.D_w.w_i + D_c.(c_{i,\text{pred}(i)} + c_{i,\text{succ}(i)})]$$

where $\mathbb{I}{i}[x] = 1$ if P_i participates in the computation, and 0 otherwise

- There exists a communication link between any processor pair
- All links have same capacity

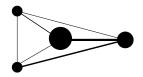
 $(\forall i, j \ c_{i,j} = c)$



- Either most powerful processor performs all the work, or all processors participate
- If all processors participate, all terminate work simultaneously $\alpha_i.D_w$ rational values ??? $(\exists \tau, \alpha_i.D_w.w_i = \tau, \text{ so } 1 = \sum_i \frac{\tau}{D_w.w_i})$
- Time of optimal solution:

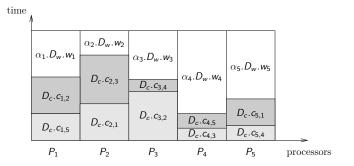
$$T_{\mathsf{step}} = \min\left\{D_w.w_{\mathsf{min}}, D_w.\frac{1}{\sum_i \frac{1}{w_i}} + 2.D_c.c\right\}$$

- There exists a communication link between any processor pair
- 2 Links have different capacities



Introduction Parallel algorithms Scheduling Pipeline workflows Models and real life Conclusion

If all processors participate (1/3)



All processors end simultaneously

If all processors participate (2/3)

• All processors end simultaneously

$$T_{\text{step}} = \alpha_i . D_w . w_i + D_c . (c_{i, \text{succ}(i)} + c_{i, \text{pred}(i)})$$

$$\bullet \sum_{i=1}^{p} \alpha_i = 1 \implies \sum_{i=1}^{p} \frac{T_{\text{step}} - D_c . (c_{i, \text{succ}(i)} + c_{i, \text{pred}(i)})}{D_w . w_i} = 1$$

$$\frac{T_{\text{step}}}{D_w . w_{\text{cumul}}} = 1 + \frac{D_c}{D_w} \sum_{i=1}^{p} \frac{c_{i, \text{succ}(i)} + c_{i, \text{pred}(i)}}{w_i}$$
where $w_{\text{cumul}} = \frac{1}{\sum_i \frac{1}{w_i}}$

$$\frac{T_{\text{step}}}{D_w \cdot w_{\text{cumul}}} = 1 + \frac{D_c}{D_w} \sum_{i=1}^p \frac{c_{i,\text{succ}(i)} + c_{i,\text{pred}(i)}}{w_i}$$

$$T_{\text{step}} \text{ minimal} \Leftrightarrow \sum_{i=1}^{p} \frac{c_{i, \text{succ}(i)} + c_{i, \text{pred}(i)}}{w_i} \text{ is minimal}$$

Search an hamiltonian cycle of minimal weight in a graph where the edge from P_i to P_j has a weight of $d_{i,j} = \frac{c_{i,j}}{w_i} + \frac{c_{j,i}}{w_i}$

NP-complete problem

 $\begin{array}{ll} \text{MINIMIZE } \sum_{i=1}^{p} \sum_{j=1}^{p} d_{i,j} \cdot x_{i,j}, \\ \text{SATISFYING THE (IN)EQUATIONS} \\ \left\{ \begin{array}{ll} (1) \ \sum_{j=1}^{p} x_{i,j} = 1 & 1 \leq i \leq p \\ (2) \ \sum_{i=1}^{p} x_{i,j} = 1 & 1 \leq j \leq p \\ (3) \ x_{i,j} \in \{0,1\} & 1 \leq i,j \leq p \\ (4) \ u_{i} - u_{j} + p.x_{i,j} \leq p - 1 & 2 \leq i,j \leq p, i \neq j \\ (5) \ u_{i} \text{ integer}, u_{i} \geq 0 & 2 \leq i \leq p \end{array} \right. \end{array}$

 $x_{i,j} = 1$ if, and only if, the edge from P_i to P_j is used

Best ring made of q processors

MINIMIZE T satisfying the (in)equations

$$\begin{array}{ll} \begin{array}{ll} (1) \ x_{i,j} \in \{0,1\} & 1 \leq i,j \leq p \\ (2) \ \sum_{i=1}^{p} x_{i,j} \leq 1 & 1 \leq j \leq p \\ (3) \ \sum_{i=1}^{p} \sum_{j=1}^{p} x_{i,j} = q \\ (4) \ \sum_{i=1}^{p} x_{i,j} = \sum_{i=1}^{p} x_{j,i} & 1 \leq j \leq p \\ \end{array}$$

$$\begin{array}{ll} (5) \ \sum_{i=1}^{p} \alpha_i = 1 \\ (6) \ \alpha_i \leq \sum_{j=1}^{p} x_{i,j} & 1 \leq i \leq p \\ (7) \ \alpha_i.w_i + \frac{D_c}{D_w} \sum_{j=1}^{p} (x_{i,j}c_{i,j} + x_{j,i}c_{j,i}) \leq T & 1 \leq i \leq p \\ \end{array}$$

$$\begin{array}{l} (8) \ \sum_{i=1}^{p} y_i = 1 \\ (9) \ -p.y_i - p.y_j + u_i - u_j + q.x_{i,j} \leq q - 1 & 1 \leq i,j \leq p, i \neq j \\ (10) \ y_i \in \{0,1\} & 1 \leq i \leq p \\ \end{array}$$

- Introduction Parallel algorithms Scheduling Pipeline workflows Models and real life Conclusion
- Linear programming

- Problems with rational variables: can be solved in polynomial time (in the size of the problem)
- Problems with integer variables: solved in exponential time in the worst case
- No relaxation in rational numbers seems possible here...

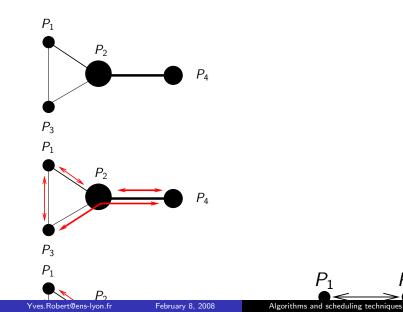
If all processors participate. Use a heuristic to solve the traveling salesman problem (as Lin-Kernighan) No guarantee, but excellent results in practice.

General case.

- Exhaustive search: feasible up to a dozen of processors
- Ø Greedy heuristic:
 - initially take best pair of processors
 - for a given ring, try to insert any unused processor in between any pair of neighbor processors in the ring

ntroduction Parallel algorithms Scheduling Pipeline workflows Models and real life Conclusion

Heterogeneous network (general case)



55/134

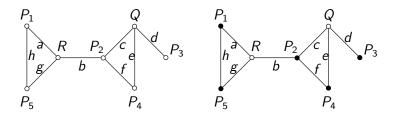
 P_2

New notations

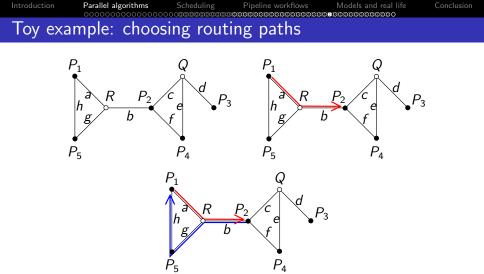
- Set of communications links: e1, ..., en
- Bandwidth of link e_m : b_{e_m}
- There is a path S_i from P_i to $P_{succ(i)}$ in the network
 - S_i uses a fraction $s_{i,m}$ of the bandwidth b_{e_m} of link e_m
 - P_i needs a time $D_c \cdot \frac{1}{\min_{e_m \in S_i} s_{i,m}}$ to send a message of size D_c to its successor
 - Constraints on the bandwidth of $e_m: \sum_{1 \leq i \leq p} s_{i,m} \leq b_{e_m}$
- Symmetrically, there is a path \mathcal{P}_i from P_i to $P_{\text{pred}(i)}$ in the network, which uses a fraction $p_{i,m}$ of the bandwidth b_{e_m} of link e_m

Introduction Parallel algorithms Scheduling Pipeline workflows Models and real life Conclusion

Toy example: choosing the ring



7 processors and 8 bidirectional communications links
We choose a ring of 5 processors: P₁ → P₂ → P₃ → P₄ → P₅ (we use neither Q, nor R)



From P_1 to P_2 , use links a and b: $S_1 = \{a, b\}$. From P_2 to P_1 , use links b, g and h: $\mathcal{P}_2 = \{b, g, h\}$. From P_1 : to P_2 , $S_1 = \{a, b\}$ and to P_5 , $\mathcal{P}_1 = \{h\}$ From P_2 : to P_3 , $S_2 = \{c, d\}$ and to P_1 , $\mathcal{P}_2 = \{b, g, h\}$

Introduction Parallel algorithms Scheduling Pipeline workflows Models and real life Conclusion Toy example: bandwidth sharing

From P_1 to P_2 we use links *a* and *b*: $c_{1,2} = \frac{1}{\min(s_{1,a},s_{1,b})}$. From P_1 to P_5 we use link *h*: $c_{1,5} = \frac{1}{p_{1,h}}$.

Set of all sharing constraints:

Lien a:
$$s_{1,a} \le b_a$$

Lien b: $s_{1,b} + s_{4,b} + p_{2,b} + p_{5,b} \le b_b$
Lien c: $s_{2,c} \le b_c$
Lien d: $s_{2,d} + s_{3,d} + p_{3,d} + p_{4,d} \le b_d$
Lien e: $s_{3,e} + p_{3,e} + p_{4,e} \le b_e$
Lien f: $s_{4,f} + p_{3,f} + p_{5,f} \le b_f$
Lien g: $s_{4,g} + p_{2,g} + p_{5,g} \le b_g$
Lien h: $s_{5,h} + p_{1,h} + p_{2,h} \le b_h$

Toy example: final quadratic system

Parallel algorithms

 $\text{MINIMIZE} \quad \max_{1 \leq i \leq 5} \left(\alpha_i.D_w.w_i + D_c.(c_{i,i-1} + c_{i,i+1}) \right) \quad \text{UNDER THE CONSTRAINTS}$

$$\begin{cases} \sum_{i=1}^{5} \alpha_{i} = 1 \\ \mathbf{s}_{1,a} \leq b_{a} \\ \mathbf{s}_{2,d} + \mathbf{s}_{3,d} + \mathbf{p}_{3,d} + \mathbf{p}_{4,d} \leq b_{d} \\ \mathbf{s}_{3,e} + \mathbf{p}_{3,e} + \mathbf{p}_{4,e} \leq b_{e} \\ \mathbf{s}_{4,g} + \mathbf{p}_{2,g} + \mathbf{p}_{5,g} \leq b_{g} \\ \mathbf{s}_{1,a}.\mathbf{c}_{1,2} \geq 1 \\ \mathbf{s}_{2,c}.\mathbf{c}_{2,3} \geq 1 \\ \mathbf{s}_{2,c}.\mathbf{c}_{2,3} \geq 1 \\ \mathbf{s}_{2,c}.\mathbf{c}_{2,1} \geq 1 \\ \mathbf{s}_{2,c}.\mathbf{c}_{2,1} \geq 1 \\ \mathbf{s}_{3,e}.\mathbf{c}_{3,4} \geq 1 \\ \mathbf{s}_{4,g}.\mathbf{c}_{4,5} \geq 1 \\ \mathbf{s}_{4,g}.\mathbf{c}_{4,5} \geq 1 \\ \mathbf{s}_{5,h}.\mathbf{c}_{5,1} \geq 1 \\ \mathbf{s}_{5,h}.\mathbf{c}_{5,1} \geq 1 \\ \mathbf{s}_{5,h}.\mathbf{c}_{5,4} \geq 1 \\ \mathbf{s}_{5,h}.\mathbf{s}_{5,h}.\mathbf{s}_{5,h} = 1 \\ \mathbf{s}_{5,h}.\mathbf{s}_{5,h} = 1 \\ \mathbf{s}_{5,h}.\mathbf$$

Models and real life

Parallel algorithms Scheduling Pipeline workflows Models and real life

Conclusion

Toy example: the moral

Problem sums up to a quadratic system if

- processors are already selected
- Processors are already ordered into a ring
- ommunication paths are already known

In other words: a quadratic system if the ring is known. If the ring is known:

- Complete graph: closed-form expression
- General graph: quadratic system

Is the more complex network model **with link contention** worth the trouble?

Adapt greedy heuristic:

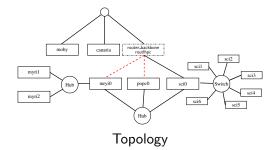
- Initially: best processor pair
- **②** For each processor P_k (not already included in the ring)
 - For each pair (P_i, P_j) of neighbors in the ring
 - Build graph of unused bandwidths (without considering the paths between P_i and P_j)
 - Ompute shortest paths (in terms of bandwidth) between P_k and P_i and P_j
 - Second Second
- Solution found at step 2 and start again

+ refinements (max-min fairness, quadratic solving)

Is this meaningful ?

- No guarantee, neither theoretical, nor practical
- Simple solution:
 - build complete graph whose edges are labeled with bandwidths of best communication paths
 - 2 apply the heuristic for complete graphs
 - allocate bandwidths

Introduction Parallel algorithms Scheduling Pipeline workflows Models and real life Conclusion Conclusion An example of an actual platform (Lyon)

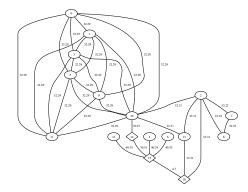


	P_1							
0.0206	0.0206	0.0206	0.0206	0.0291	0.0206	0.0087	0.0206	0.0206
Po	P ₁₀	P ₁₁	P12	P13	P14	P15	P ₁₆	
0.0206								

Processors processing times (in seconds par megaflop)

Introduction Parallel algorithms Scheduling Pipeline workflows Models and real life Conclusion

Describing the Lyon platform



Abstracting the Lyon platform.

First heuristic building the ring without taking link sharing into account

Second heuristic taking link sharing into account (and with quadratic programming)

Ratio D_c/D_w	H1	H2	Gain
0.64	0.008738 (1)	0.008738 (1)	0%
0.064	0.018837 (13)	0.006639 (14)	64.75%
0.0064	0.003819 (13)	0.001975 (14)	48.28%

Ratio D_c/D_w	H1	H2	Gain
0.64	0.005825 (1)	0.005825 (1)	0 %
0.064	0.027919 (8)	0.004865 (6)	82.57%
0.0064	0.007218 (13)	0.001608 (8)	77.72%

Table: T_{step}/D_w for each heuristic on the Lyon and Strasbourg platforms (numbers in parentheses show size of solution rings)

Results

And with non dedicated platforms?

Available processing power of each processor changes over time

Available bandwidth of each communication link changes over time

 \Rightarrow Need to reconsider current allocation

 \Rightarrow Introduce (dynamic) redistribution algorithms

A possible approach

• If actual performance "too much" different from expected characteristics when building solution

Actual criterion defining "too much" ?

- If actual performance "very" different
 - compute a new ring
 - redistribute data from old ring to new one Actual criterion defining "very" ? Cost of the redistribution ?
- If the actual performance is "a little" different
 - compute new load-balancing in existing ring
 - redistribute data in existing ring How to efficiently do the redistribution ?

Load-balancing

Principle: ring is modified only if this is profitable

- T_{step}: length of an iteration *before* load-balancing
- T'_{step} : length of an iteration *after* load-balancing
- *T*_{redistribution}: redistribution cost
- *n*_{iter}: number of remaining iterations

Condition:
$$T_{\text{redistribution}} + n_{\text{iter}} \times T'_{\text{step}} \leq n_{\text{iter}} \times T_{\text{step}}$$

Redistribution algorithms for homo/hetero uni/bi-dir rings

(Well, let's do this another time ...)

Introduction Parallel algorithms Scheduling Pipeline workflows Models and real life Conclusion

Lesson learnt?

Realistic networks models: mandatory but less tractable

 \dots Need find good trade-offs. Would be even more complicated with hierarchical architectures B

Ŭ

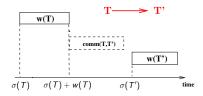
• Application = DAG G = (T, E, w)

- $\mathcal{T} = \mathsf{set} \mathsf{ of } \mathsf{tasks}$
- E = dependence constraints
- w(T) = computational cost of task T (execution time)
- c(T, T') = communication cost (data sent from T to T')

Platform

- Set of p identical processors
- Schedule
 - $\sigma(T) = date to begin execution of task T$
 - $\operatorname{alloc}(T) = \operatorname{processor} \operatorname{assigned} to it$

Traditional scheduling – Constraints



• Data dependences If $(T, T') \in E$ then

- if $\operatorname{alloc}(T) = \operatorname{alloc}(T')$ then $\sigma(T) + w(T) \le \sigma(T')$
- if $\operatorname{alloc}(T) \neq \operatorname{alloc}(T')$ then $\sigma(T) + w(T) + c(T, T') \leq \sigma(T')$
- Resource constraints

$$\begin{aligned} \mathsf{alloc}(T) &= \mathsf{alloc}(T') \Rightarrow \\ (\sigma(T) + w(T) \leq \sigma(T')) \text{ or } (\sigma(T') + w(T') \leq \sigma(T)) \end{aligned}$$

Traditional scheduling – Objective functions

• Makespan or total execution time

$$MS(\sigma) = \max_{T \in \mathcal{T}} \left(\sigma(T) + w(T) \right)$$

- Other classical objectives:
 - Sum of completion times
 - With release dates: max flow (response time), or sum flow
 - Fairness oriented: max stretch, or sum stretch

Introduction Parallel algorithms Scheduling Pipeline workflows Models and real life Conclusion

Traditional scheduling – About the model

$\bullet\,$ Simple but OK for computational resources

- No CPU sharing, even in models with preemption
- At most one task running per processor at any time-step
- Very crude for network resources
 - Unlimited number of simultaneous sends/receives per processor
 - $\bullet~$ No contention \rightarrow unbounded bandwidth on any link
 - Fully connected interconnection graph (clique)
- In fact, model assumes infinite network capacity

Makespan minimization

NP-hardness

• *Pb*(*p*) NP-complete for independent tasks and no communications

$$(E = \emptyset, p = 2 \text{ and } c = \overline{0})$$

• Pb(p) NP-complete for UET-UCT graphs ($w = c = \overline{1}$)

Approximation algorithms

- Without communications, list scheduling is a
 - $\left(2-\frac{1}{p}\right)$ -approximation
- With communications, result extends to coarse-grain graphs
- With communications, no $\lambda\text{-approximation}$ in general

List scheduling – Without communications

Initialization:

- Compute priority level of all tasks
- Priority queue = list of free tasks (tasks without predecessors) sorted by priority

While there remain tasks to execute:

- Add new free tasks, if any, to the queue.
- If there are q available processors and r tasks in the queue, remove first min(q, r) tasks from the queue and execute them

Priority level

- Use critical path: longest path from the task to an exit node
- Computed recursively by a bottom-up traversal of the graph

- Priority level
 - Use *pessimistic* critical path: include all edge costs in the weight
 - Computed recursively by a bottom-up traversal of the graph
- MCP Modified Critical Path
 - Assign free task with highest priority to best processor
 - Best processor = finishes execution first, given already taken scheduling decisions
 - Free tasks may not be ready for execution (communication delays)
 - May explore inserting the task in empty slots of schedule
 - Complexity $O(|V| \log |V| + (|E| + |V|)p)$

- EFT Earliest Finish Time
 - Dynamically recompute priorities of free tasks
 - Select free task that finishes execution first (on best processor), given already taken scheduling decisions
 - Higher complexity $O(|V|^3 p)$
 - May miss "urgent" tasks on critical path
- Other approaches
 - Two-step: clustering + load balancing
 - DSC Dominant Sequence Clustering $O((|V| + |E|) \log |V|)$
 - LLB List-based Load Balancing $O(C \log C + |V|)$ (C number of clusters generated by DSC)
 - Low-cost: FCP Fast Critical Path
 - Maintain constant-size sorted list of free tasks:
 - Best processor = first idle or the one sending last message
 - Low complexity $O(|V|\log p + |E|)$

Scheduling Extending the model to heterogeneous clusters

- Task graph with *n* tasks T_1, \ldots, T_n .
- Platform with p heterogeneous processors P_1, \ldots, P_p .

Pipeline workflows

• Computation costs:

Parallel algorithms

- w_{ia} = execution time of T_i on P_a
- $\overline{w_i} = \frac{\sum_{q=1}^{p} w_{iq}}{p}$ average execution time of T_i
- particular case: consistent tasks $w_{ia} = w_i \times \gamma_a$
- Communication costs:
 - data(i, j): data volume for edge e_{ii} : $T_i \rightarrow T_i$
 - v_{qr} : communication time for unit-size message from P_q to P_r (zero if q = r)
 - $com(i, j, q, r) = data(i, j) \times v_{qr}$ communication time from T_i executed on P_q to P_i executed on P_r
 - $\overline{\text{com}_{ij}} = \text{data}(i, j) \times \frac{\sum_{1 \le q, r \le p, q \ne r} v_{qr}}{p(p-1)}$ average communication cost for edge e_{ii} : $T_i \rightarrow T_i$

Introduction

Models and real life

Conclusion

Rewriting constraints

Dependences For e_{ii} : $T_i \rightarrow T_i$, $q = \text{alloc}(T_i)$ and $r = \text{alloc}(T_i)$: $\sigma(T_i) + w_{iq} + \operatorname{com}(i, j, q, r) \leq \sigma(T_i)$ Resources If $q = \operatorname{alloc}(T_i) = \operatorname{alloc}(T_i)$, then $(\sigma(T_i) + w_{ig} \leq \sigma(T_i))$ or $(\sigma(T_i) + w_{ig} \leq \sigma(T_i))$

Makespan

$$\max_{1 \le i \le n} \left(\sigma(T_i) + w_{i, \text{alloc}(T_i)} \right)$$

HEFT: Heterogeneous Earliest Finish Time

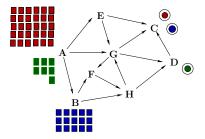
• Priority level:

•
$$\operatorname{rank}(T_i) = \overline{w_i} + \max_{T_j \in \operatorname{Succ}(T_i)} (\overline{\operatorname{com}_{ij}} + \operatorname{rank}(T_j)),$$

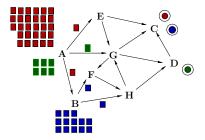
where Succ(T) is the set of successors of T

- Recursive computation by bottom-up traversal of the graph
- Allocation
 - For current task *T_i*, determine best processor *P_q*: minimize σ(*T_i*) + w_{iq}
 - Enforce constraints related to communication costs
 - Insertion scheduling: look for $t = \sigma(T_i)$ s.t. P_q is available during interval $[t, t + w_{iq}]$
- Complexity: same as MCP without/with insertion

- ③ Nothing (still may need to map a DAG onto a platform!)
- (E) Absurd communication model: complicated: many parameters to instantiate *while not realistic* (clique + no contention)
- 🙁 Wrong metric: need to relax makespan minimization objective



- Routing sets of messages from sources to destinations
- Paths not fixed a priori
- Packets of same message may follow different paths



- A packet crosses an edge within one time-step
- At any time-step, at most one packet crosses an edge

Scheduling: for each time-step, decide which packet crosses any given edge

• $n^{k,l}$: total number of packets to be routed from k to l

n^{k,l}_{i,j}: total number of packets routed from k to l and crossing edge (i, j)

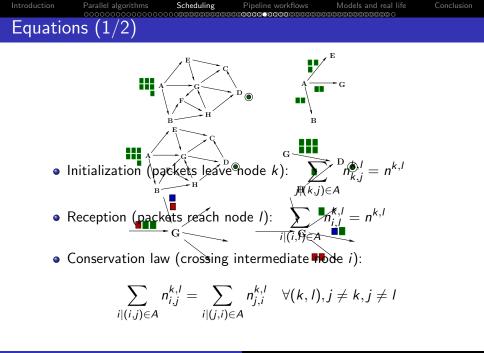
Lower bound

Congestion $C_{i,j}$ of edge (i,j)= total number of packets that cross (i,j)

$$C_{i,j} = \sum_{(k,l)|n^{k,l}>0} n_{i,j}^{k,l} \qquad C_{\max} = \max_{i,j} C_{i,j}$$

 C_{\max} lower bound on schedule makespan $C^* \geq C_{\max}$

$$\Rightarrow$$
 "Fluidified" solution in C_{\max} ?



• Congestion

$$C_{i,j} = \sum_{(k,l)|n^{k,l}>0} n_{i,j}^{k,l}$$

• Objective function

$$C_{\max} \ge C_{i,j}, \quad \forall i,j$$

Minimize C_{\max}

Linear program in rational numbers: polynomial-time solution. In practice use GLPK, Maple, Mupad ...

- Compute optimal solution C_{\max} , $n_{i,j}^{k,l}$ of previous linear program
- Periodic schedule:
 - Define $\Omega = \sqrt{C_{\max}}$
 - Use $\left\lceil \frac{C_{\max}}{\Omega} \right\rceil$ periods of length Ω
 - During each period, edge (*i*, *j*) forwards (at most)

$$m_{i,j}^{k,l} = \left\lfloor \frac{n_{i,j}^{k,l}\Omega}{C_{\max}}
ight
floor$$

packets that go from k to l

• Clean-up: sequentially process residual packets inside network

Performance

- Schedule is feasible
- Schedule is asymptotically optimal:

$$C_{\max} \leq C^* \leq C_{\max} + O(\sqrt{C_{\max}})$$

- Relaxation of objective function
- Rational number of packets in LP formulation
- Periods long enough so that rounding down to integer numbers has negligible impact
- Periods numerous enough so that loss in first and last periods has negligible impact
- Periodic schedule, described in compact form

Master-worker tasking: framework

Heterogeneous resources

- Processors of different speeds
- Communication links with various bandwidths

Large number of independent tasks to process

- Tasks are atomic
- Tasks have same size

Single data repository

- One master initially holds data for all tasks
- Several workers arranged along a star, a tree or a general graph

Application examples

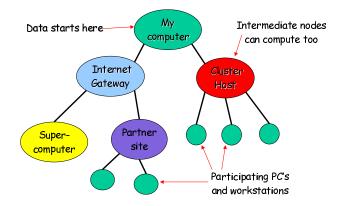
- Monte Carlo methods
- SETI@home
- Factoring large numbers
- Searching for Mersenne primes
- Particle detection at CERN (LHC@home)
- ... and many others: see BOINC at http://boinc.berkeley.edu

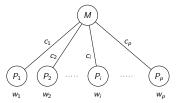
Makespan vs. steady state

Two-different problems

Makespan Maximize total number of tasks processed within a time-bound

Steady state Determine **periodic task allocation** which maximizes total throughput





- Master sends tasks to workers sequentially, and without preemption
- Full computation/communication overlap for each worker
- Worker P_i receives a task in c_i time-units
- Worker P_i processes a task in w_i time-units
- Worker P_i executes α_i tasks per time-unit
- Computations: $\alpha_i w_i \leq 1$

- Faster-communicating workers first: $c_1 \leq c_2 \leq \dots$
- Make full use of first q workers, where q largest index s.t.

$$\sum_{i=1}^q \frac{c_i}{w_i} \leq 1$$

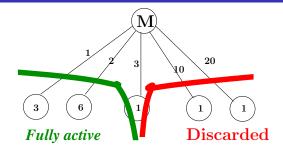
- Make partial use of next worker P_{q+1}
- Discard other workers

Bandwidth-centric strategy

- Delegate work to the fastest communicating workers
- It doesn't matter if these workers are computing slowly
- Slow workers will not contribute much to overall throughput

Parallel algorithms Scheduling

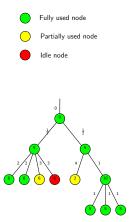
Pipeline workflows



Tasks	Communication	Computation
6 tasks to P_1	$6c_1 = 6$	$6w_1 = 18$
3 tasks to P_2	$3c_2 = 6$	$3w_2 = 18$
2 tasks to P_3	$2c_3 = 6$	2 <i>w</i> ₃ = 2

11 tasks every 18 time-units ($\rho = 11/18 \approx 0.6$) \odot Compare to purely greedy (demand-driven) strategy!

Extension to trees

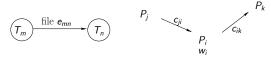


Resource selection based on local information (children)

- Introduction Parallel algorithms Scheduling Pipeline workflows Models and real life Conclusion
- Does this really work?

- Can we deal with arbitrary platforms (including cycles)? Yes
- Can we deal with return messages? Yes
- In fact, can we deal with more complex applications (arbitrary collections of DAGs)? Yes, I mean, almost!

LP formulation still works well ...



Conservation law

$$\forall m, n \quad \sum_{j} \operatorname{sent}(P_{j} \to P_{i}, e_{mn}) + \operatorname{executed}(P_{i}, T_{m}) \\ = \operatorname{executed}(P_{i}, T_{n}) + \sum_{k} \operatorname{sent}(P_{i} \to P_{k}, e_{mn})$$

Computations

$$\sum_{m} \operatorname{executed}(P_i, T_m) \times \operatorname{flops}(T_m) \times w_i \leq 1$$

Outgoing communications

$$\sum_{m,n} \sum_{j} \operatorname{sent}(P_j \rightarrow P_i, e_{mn}) imes \operatorname{bytes}(e_{mn}) imes c_{ij} \leq 1$$

Parallel algorithms Scheduling Introduction Models and real life Conclusion but schedule reconstruction is harder link43 link34 link4 link2 link23 link31 link1 link2 link1 40 80 120 160

- 🙂 Actual (cyclic) schedule obtained in polynomial time
- © Asymptotic optimality ۲
- \odot A couple of practical problems (large period, # buffers)
- 🙂 No **local** scheduling policy

The beauty of steady-state scheduling

Scheduling

Parallel algorithms

Rationale Maximize throughput (total load executed per period)

Simplicity Relaxation of makespan minimization problem

- Ignore initialization and clean-up phases
- Precise ordering of tasks/messages not needed
- Characterize resource activity per time-unit:

Pipeline workflows

- which (rational) fraction of time is spent computing for which application?
- which (rational) fraction of time is spent receiving from or sending to which neighbor?

Efficiency Optimal throughput \Rightarrow optimal schedule (up to a constant number of tasks)

Introduction

Conclusion

Models and real life

Lesson learnt?

Resource selection is mandatory

... implementation may still be dynamic, provided that static allocation is enforced by scheduler

Example: demand-driven assignment of enrolled workers

Scheduling multiple applications

- Large-scale platforms not likely to be exploited in dedicated mode/single application
- Investigate scenarios in which multiple applications are simultaneously executed on the platform
 ⇒ competition for CPU and network resources

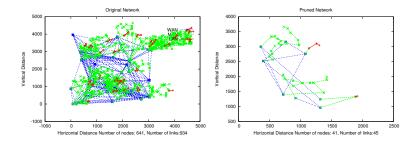
- Large complex platform: several clusters and backbone links
- One (divisible load) application running on each cluster
- Which fraction of the job to delegate to other clusters?
- Applications have different communication-to-computation ratios
- How to ensure fair scheduling and good resource utilization?

Parallel algorithms Scheduling Pipeline workflows Models and real life

MINIMIZE $\min_k \left\{ \frac{\alpha_k}{\pi_k} \right\}$, UNDER THE CONSTRAINTS UNDER THE CONSTRAINTS $\begin{cases}
(1a) \quad \forall C^k, \quad \sum_{l} \alpha_{k,l} = \alpha_k \\
(1b) \quad \forall C^k, \quad \sum_{l} \alpha_{l,k}.\tau_l \leq s_k \\
(1c) \quad \forall C^k, \quad \sum_{l \neq k} \alpha_{k,l}.\delta_k + \sum_{j \neq k} \alpha_{j,k}.\delta_j \leq g_k \\
(1d) \quad \forall I_i, \quad \sum_{l_i \in L_{k,l}} \beta_{k,l} \leq \text{max-connect}(I_i) \\
(1e) \quad \forall k, l, \quad \alpha_{k,l}.\delta_k \leq \beta_{k,l} \times g_{k,l} \\
(1f) \quad \forall k, l, \quad \alpha_{k,l} \geq 0 \\
(1g) \quad \forall k, l, \quad \beta_{k,l} \in \mathbb{N}
\end{cases}$ (1)

- Solution to *rational* linear problem as comparator/upper bound
- Several heuristics, greedy and LP-based
- $\bullet~$ Use Tiers as topology generator, and then $S_{\text{IM}}G_{\text{RID}}$

Methodology (cont'd)



	distribution	
K	5,7,,90	
$\log(bw(l_k)), \log(g_k)$	normal (mean= $\log(2000)$, std= $\log(10)$)	
s _k	uniform, 1000 — 10000	
max-connect, δ_k , τ_k , π_k	uniform, 1 — 10	
Platform parameters used in simulation		

Hints for implementation

- Participants sharing resources in a Virtual Organization
- Centralized broker managing applications and resources
- Broker gathers all parameters of LP program
- Priority factors
- Various policies and refinements possible
 ⇒ e.g. fixed number of connections per application

The application

- Consecutive data-sets fed into pipeline
- Period T_{period} = time interval between beginning of execution of two consecutive data sets
- Latency T_{latency} = time elapsed between beginning and end of execution for a given data set

Single workflow

- Period/latency bi-criteria optimization
- Robust mappings
- Data-parallel stages (decreases latency)
- Replicated stages (decreases period & increases robustness)

Several (concurrent) workflows

- Competition for CPU and network resources
- Fairness between applications (max-min throughput, max stretch)
- Sensitivity to application/platform parameter changes

Lesson learnt?

Period, latency, stretch, robustness, fairness and combination lead to difficult optimization problems

Lot of work for young and talented algorithmicians \bigcirc

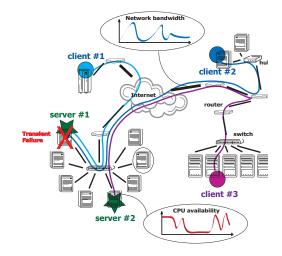
Example: almost everything yet to be done!

- For regular problems, the *structure* of the task graph (nodes and edges) only depends upon the application, not upon the target platform
 - Problems arise from *weights*, i.e. the estimation of execution and communication times
 - Classical answer: "use the past to predict the future"
- Divide scheduling into phases, during which machine and network parameters are collected (with NWS)
 ⇒ This information guides scheduling decisions for next phase

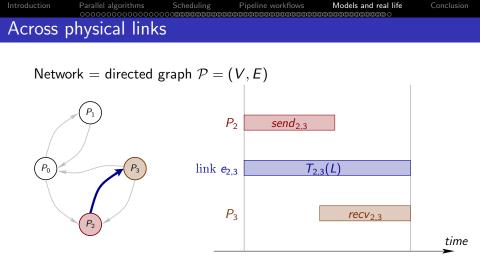
Experiments versus simulations

- Real experiments difficult to drive (genuine instability of non-dedicated platforms)
- Simulations ensure reproducibility of measured data
- Key issue: run simulations against a realistic environment
- *Trace-based simulation*: record platform parameters today, and simulate the algorithms tomorrow, against recorded data
- Use SIMGRID, an event-driven simulation toolkit

SIMGRID traces

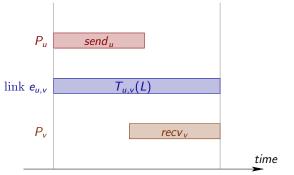


See http://simgrid.gforge.inria.fr/



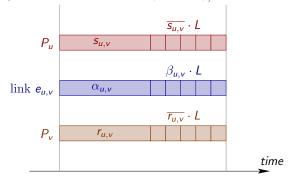
- General case: affine model (includes latencies)
- Common variant: sending and receiving processors busy during whole transfer

Bar-Noy, Guha, Naor, Schieber:
 occupation time of sender P_u independent of target P_v



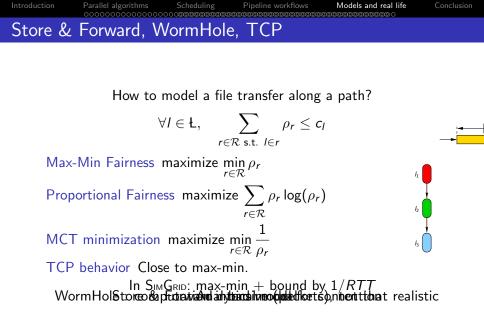
not *fully* multi-port model, but allows for starting a new transfer from P_u without waiting for previous one to finish

 Bhat, Raghavendra and Prasanna: same parameters for sender P_u, link e_{u,v} and receiver P_v



two flavors:

- bidirectional: simultaneous send and receive transfers allowed
- unidirectional: only one send or receive transfer at a given time-step



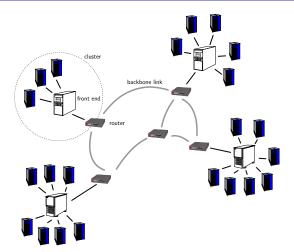
- - Traditional assumption: Fair Sharing
 - Open *i* TCP connections, receive *bw*(*i*) bandwidth per connection

•
$$bw(i) = bw(1)/i$$
 on a LAN

- Experimental evidence $\rightarrow bw(i) = bw(1)$ on a WAN
- Backbone links have so many connections that interference among a few selected connections is negligible
- Better model: $bw(i) = \frac{bw(1)}{1 + (i-1).\gamma}$
- $\gamma=1$ for a perfect LAN, $\gamma=0$ for a perfect WAN

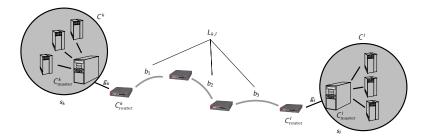
Introduction Parallel algorithms Scheduling Pipeline workflows Models and real life Conclusion

Sample large-scale platform



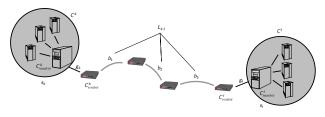
Accounts for Hierarchy + BW sharing Assumes knowledge of Routing + Backbone bw + CPU speed

A first trial



Clusters and backbone links

A first trial (cont'd)



Clusters

- K clusters C^k , $1 \le k \le K$
- C_{master}^k front-end processor
- C_{router}^k router to external world
- s_k cumulated speed of C^k
- g_k bandwidth of the LAN link $(\gamma = 1)$ from C_{master}^k to C_{router}^k

Network

• Set \mathcal{R} of routers and \mathcal{B} of backbone links I_i

Sensibility analysis

• Asses the impact of uncertainties on existing solutions

Design robust solutions

Robust optimization

A robust solution remains "close" to optimal for all scenarios

Internet-based computing

No knowledge on task execution times

Minimize risk taken while making any scheduling decision

Stochastic models

- What are the relevant stochastic models? Most characteristics remain to be studied and modeled
- How can we use them? Chance-constrained programming? Other mathematical tools?

Tools for the road

- Forget absolute makespan minimization
- Resource selection mandatory
- Divisible load (fractional tasks)
- Single application: period / latency / power / robustness
- Several applications: max-min fairness, MAX stretch
- Linear programming: absolute bound to assess heuristics

- If platform is well identified and relatively stable, try to:
 (i) accurately model hierarchical structure
 (ii) design well-suited and robust scheduling algorithms
- If platform is not stable enough, or if it evolves too fast, dynamic schedulers are the only option
- Otherwise, grab any opportunity to

inject static knowledge into dynamic schedulers

☺ Is this opportunity a niche?

② Does it encompass a wide range of applications?