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Who cares about scheduling?

Heard it through the grapevine?

Scheduling is “this thing that people in academia like to think
about but that people who do real stuff sort of ignore”

Let’s prove this

wrong?!
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Evolution of parallel machines

From (good old) parallel architectures . . . . . . to heterogeneous
clusters . . . . . . and to large-scale grid platforms?

Parallel algorithm design and scheduling were already difficult tasks
with homogeneous machines
On heterogeneous platforms, it gets worse
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New platforms, new problems, new solutions

Target platforms: Large-scale heterogenous platforms
(networks of workstations, clusters, collections of clusters, grids, ...)

New problems

Heterogeneity of processors (CPU power, memory)

Heterogeneity of communication links

Irregularity of interconnection networks

Non-dedicated platforms

Need to adapt algorithms and scheduling strategies: new objective
functions, new models
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Outline

1 Parallel algorithms
Independent tasks
A simple tiling problem
Matrix product (ScaLAPACK)
Matrix product (master-slave)
Iterative algorithms

2 Scheduling
Background: scheduling DAGs
Packet routing
Steady-state scheduling
Multiple applications

3 Pipeline workflows

4 Models and real life

5 Conclusion
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Independent chunks

B independent equal-size tasks • • • • • • • • ••
p processors P1, P2, . . ., Pp

wi = time for Pi to process a task •

Intuition: load of Pi proportional to its speed 1/wi

Assign ni tasks to Pi

Objective: minimize Texe = max∑p
i=1 ni=B

(ni × wi )
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Dynamic programming

With 3 processors: w1 = 3, w2 = 5, and w3 = 8

P1 • • • ◦ ◦ ◦ • • • ◦ ◦ ◦ • • •
P2 N N N N N M M M M M N N N N N
P3 � � � � � � � � � � � � � � � �

Task n1 n2 n3 Texe Selected proc.
0 0 0 0 1
1 1 0 0 3 2
2 1 1 0 5 1
3 2 1 0 6 3
4 2 1 1 8 1
5 3 1 1 9 2
6 3 2 1 10 1
7 4 2 1 12 1
8 5 2 1 15 2
9 5 3 1 15 3
10 5 3 2 16
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Static versus dynamic

Greedy (demand-driven) would have done a perfect job

Would even be better (possible variations in processor speeds)

Static assignment required useless thinking /
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Coping with dependences
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A simple finite difference problem

Iteration space: 2D rectangle of size N1 × N2

Dependences between tiles

{(
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)
,

(
0
1

)}
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Allocation strategy (1/3)

Use column-wise allocation to enhance locality

...

6

5 → 6

4 → 5 → 6

3 → 4 → 5

2 → 3 → 4

1 → 2 → 3 . . .

Stepwise execution
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Allocation strategy (2/3)

With column-wise allocation,

Topt ≈
N1 × N2∑p

i=1
1
wi

.

Greedy (demand-driven) allocation ⇒ slowdown ?!
Execution progresses at the pace of the slowest processor /
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Allocation strategy (3/3)

With 3 processors, w1 = 3, w2 = 5, and w3 = 8:

...

  33

w =3

w =5
  1

  2

w =8P

P

P1

2

i

j

Texe ≈
8

3
N1N2 ≈ 2.67 N1N2

Topt ≈
120

79
N1N2 ≈ 1.52 N1N2
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Periodic static allocation (1/2)

With 3 processors, w1 = 3, w2 = 5, and w3 = 8:

...

  33

w =3

w =5
  1

  2

w =8P

P

P1

2

i

j

Assigning blocks of B = 10 columns, Texe ≈ 1.6 N1N2

Yves.Robert@ens-lyon.fr February 8, 2008 Algorithms and scheduling techniques 16/ 134



Introduction Parallel algorithms Scheduling Pipeline workflows Models and real life Conclusion

Periodic static allocation (2/2)

L = lcm(w1,w2, . . . ,wp)
Example: L = lcm(3, 5, 8) = 120

P1 receives first n1 = L/w1 columns, P2 next n2 = L/w2

columns, and so on

Period: block of B = n1 + n2 + . . . + np contiguous columns
Example: B = n1 + n2 + n3 = 40 + 24 + 15 = 79

Change schedule:
- Sort processors so that n1w1 ≤ n2w2 ≤ . . . ≤ npwp

- Process horizontally within blocks

Optimal ,
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Lesson learnt?

With different-speed processors . . .
. . . we need to think (design static schedules)

. . . but implementation may remain dynamic ,

Example: demand-driven allocation of blocks of adequate size

. . . well, in some cases it gets truly complicated /
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Why revisit matrix-product?

A fundamental computational kernel (the mother of parallel
algorithms)

Archetype of a tightly-coupled application

Well-understood for homogeneous 2D-arrays of processors
- Cannon algorithm
- ScaLAPACK outer product algorithm
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Application model

t blocks
of size q ∗ q

... ...

...

...

...

Bk,j
...

Ci ,j

r ∗ s blocks

stripesr

s stripes

Ai ,k

Use q × q blocks to harness efficiency of Level 3 BLAS
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ScaLAPACK algorithm on (homogeneous) 2D grids (1/2)

C = AB on a p1 × p2 processor grid

Granularity: one element = one square q × q block

Each matrix is partitioned into p1 × p2 rectangles

Each processor is responsible for updating its rectangle

Outer product version: at each step,
- a column of blocks is communicated (broadcast) horizontally
- a row of blocks is communicated (broadcast) vertically
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ScaLAPACK algorithm on (homogeneous) 2D grids (2/2)

Matrix product on a 3 × 4 homogeneous 2D-grid
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Algorithm on (heterogeneous) 2D grids (2/2)

Matrix product on a 3 × 4 heterogeneous 2D-grid
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2D load balancing (1/2)

P33 P34P32

P23 P24P22

P13 P14P12

P31

P21

P11

r3

r2

r1

c1 c2 c3 c4

Objective: max ri×wij×cj≤1 {
(∑p1

i=1 ri
)
×

(∑p2

j=1 cj

)
}

Maximize total number of elements processed within one time unit
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2D load balancing (2/2)

Given p processors, how to arrange them along a 2D grid of size
p1 × p2 ≤ p ...

... so as to optimally load-balance the work of the processors

Search among all possible arrangements of p1 × p2 processors
as a p1 × p2 grid

For each arrangement, solve optimization problem

NP-hard /
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Matrix product on heterogeneous clusters
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Matrix product with 13 heterogeneous processors
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Optimization

How to compute the area and shape of the p rectangles?

Load-balancing computations assign areas proportional to
speeds

Minimizing communication overhead choose shapes:
- total communication volume

Ĉ =

p∑
i=1

(hi + vi )

sum of the half perimeters of the p rectangles
- for parallel communications:

M̂ =
p

max
i=1

(hi + vi )

Both problems NP-hard /
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Why revisit matrix-product?

A fundamental computational kernel (the mother of parallel
algorithms)

Archetype of a tightly-coupled application

Well-understood for homogeneous 2D-arrays of processors
- Cannon algorithm
- ScaLAPACK outer product algorithm

Target platforms = heterogeneous clusters

Target usage = speed up MATLAB-client
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Same application model

t blocks
of size q ∗ q

... ...

...

...

...

Bk,j
...

Ci ,j

r ∗ s blocks

stripesr

s stripes

Ai ,k

Use q × q blocks to harness efficiency of Level 3 BLAS
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Platform model

Star network master M and p workers Pi

X .wi time-units for Pi to execute a task of size X

X .ci time-units for M to send/rcv msg of size X to/from Pi

Master has no processing capability

Enforce one-port model

Memory limitation: only mi buffers available for Pi

→ at most mi blocks simultaneously stored on worker
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Strategy for allocating buffers

Natural memory management

Assign one-third for each of A, B and C
Example: m = 21 ⇒ 7 buffers per matrix

Optimal memory management

Find largest µ s.t. 1 + µ + µ2 ≤ m
Assign 1 buffer to A, µ to B and µ2 to C
Example: m = 21 ⇒ 1 for A, 4 to B and 16 to C
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Example with m = 21

C11

C12C11

C41 C42 C43 C44
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...
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Bt3 Bt4Bt2Bt1

A4t

Yves.Robert@ens-lyon.fr February 8, 2008 Algorithms and scheduling techniques 34/ 134



Introduction Parallel algorithms Scheduling Pipeline workflows Models and real life Conclusion

Algorithm with identical workers

c = 2, w = 4.5, µ = 4, t = 100, enroll P = 5 workers

P× µ2C

P× µ2C P× µ(A, B)

P× µ2C P× µ(A, B)P× µ(A, B)

P× µ2C P× µ(A, B)P× µ(A, B) P× µ(A, B)

t

P× µ2C P× µ(A, B)P× µ(A, B) P× µ(A, B)

t

P× µ2C
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Performance

Communication-to-computation ratio:

2

t
+

2

µ
→ 2√

m

Close to lower bound

Enroll P ≤ p workers, where

P =
⌈µw

2c

⌉
In the example, P = d4.5e

Typically, c = q2τc and w = q3τa

→ resource selection P =
⌈
µq τa

2τc

⌉
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Algorithms for heterogeneous platforms

Different memory patterns for workers

222
222
222

22222
22222
22222
22222
22222

22
22

Complicated resource selection

Complicated communication ordering

Complicated schedule

. . . but it works fine , (see experiments in papers)
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Lesson learnt?

Can provide efficient algorithms for tightly coupled applications
but requires lots of efforts

. . . implementation cannot be demand-driven
unless ready to pay huge performance degradation

Example: resource selection plus static ordering mandatory for
heterogeneous platforms
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Iterative algorithms

Initial data (typically, a matrix)
Algorithm

1 Each processor performs a computation on its data chunk

2 Each processor exchanges the “border” of its data chunk of
data with its neighbors

3 Go back to Step 1

Questions

Which processors should be used?

What amount of data should they receive?

How do we partition initial data set?

Impact of network models
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Slicing data

Data: a 2-D array

P1 P2 P3P4

P1 P2

P4P3

P1 P2

P4P3

Uni-dimensional partitioning into vertical slices
Consequences:

1 Borders and neighbors easily defined
2 Constant volume of data exchanged between neighbors: Dc
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Notations

Processors: P1, ..., Pp

Processor Pi executes a unit task in time wi

Overall amount of work Dw ;
Share of Pi : αi .Dw processed in time αi .Dw .wi

(αi ≥ 0,
∑

j αj = 1)

Cost of a unit-size communication from Pi to Pj : ci ,j

Cost of a send from Pi to its successor in the ring: Dc .ci ,succ(i)

Yves.Robert@ens-lyon.fr February 8, 2008 Algorithms and scheduling techniques 42/ 134



Introduction Parallel algorithms Scheduling Pipeline workflows Models and real life Conclusion

Communications: 1-port model

A processor can:

send at most one message at any time

receive at most one message at any time

send and receive a message simultaneously
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Objective

1 Select q processors out of p available resources

2 Arrange them along a ring

3 Distribute data

Minimize:

max
1≤i≤p

I{i}[αi .Dw .wi + Dc .(ci ,pred(i) + ci ,succ(i))]

where I{i}[x ] = 1 if Pi participates in the computation, and 0
otherwise
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Homogeneous fully-connected network

1 There exists a communication link between any processor pair

2 All links have same capacity
(∀i , j ci ,j = c)
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Results

Either most powerful processor performs all the work, or all
processors participate

If all processors participate, all terminate work simultaneously
αi .Dw rational values ???
(∃τ, αi .Dw .wi = τ , so 1 =

∑
i

τ
Dw .wi

)

Time of optimal solution:

Tstep = min

{
Dw .wmin,Dw .

1∑
i

1
wi

+ 2.Dc .c

}
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Heterogeneous fully-connected network

1 There exists a communication link between any processor pair

2 Links have different capacities
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If all processors participate (1/3)

time

Dc .c1,5

Dc .c1,2

Dc .c2,1

Dc .c2,3

Dc .c3,2

Dc .c4,3

Dc .c4,5

Dc .c5,4

Dc .c5,1

α5.Dw .w5

P1 P2 P3 P4 P5

α4.Dw .w4
Dc .c3,4

α3.Dw .w3

α2.Dw .w2

α1.Dw .w1

processors

All processors end simultaneously
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If all processors participate (2/3)

All processors end simultaneously

Tstep = αi .Dw .wi + Dc .(ci ,succ(i) + ci ,pred(i))

p∑
i=1

αi = 1 ⇒
p∑

i=1

Tstep − Dc .(ci ,succ(i) + ci ,pred(i))

Dw .wi
= 1

Tstep

Dw .wcumul
= 1 +

Dc

Dw

p∑
i=1

ci ,succ(i) + ci ,pred(i)

wi

where wcumul = 1∑
i

1
wi
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If all processors participate (3/3)

Tstep

Dw .wcumul
= 1 +

Dc

Dw

p∑
i=1

ci ,succ(i) + ci ,pred(i)

wi

Tstep minimal ⇔
p∑

i=1

ci ,succ(i) + ci ,pred(i)

wi
is minimal

Search an hamiltonian cycle of minimal weight in a graph where
the edge from Pi to Pj has a weight of di ,j =

ci,j

wi
+

cj,i

wj

NP-complete problem
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If all processors participate: linear program

Minimize
∑p

i=1

∑p
j=1 di ,j .xi ,j ,

satisfying the (in)equations
(1)

∑p
j=1 xi ,j = 1 1 ≤ i ≤ p

(2)
∑p

i=1 xi ,j = 1 1 ≤ j ≤ p
(3) xi ,j ∈ {0, 1} 1 ≤ i , j ≤ p
(4) ui − uj + p.xi ,j ≤ p − 1 2 ≤ i , j ≤ p, i 6= j
(5) ui integer, ui ≥ 0 2 ≤ i ≤ p

xi ,j = 1 if, and only if, the edge from Pi to Pj is used
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General case : linear program

Best ring made of q processors

Minimize T satisfying the (in)equations

(1) xi,j ∈ {0, 1} 1 ≤ i , j ≤ p
(2)

∑p
i=1 xi,j ≤ 1 1 ≤ j ≤ p

(3)
∑p

i=1

∑p
j=1 xi,j = q

(4)
∑p

i=1 xi,j =
∑p

i=1 xj,i 1 ≤ j ≤ p

(5)
∑p

i=1 αi = 1
(6) αi ≤

∑p
j=1 xi,j 1 ≤ i ≤ p

(7) αi .wi + Dc
Dw

∑p
j=1(xi,jci,j + xj,icj,i ) ≤ T 1 ≤ i ≤ p

(8)
∑p

i=1 yi = 1
(9) − p.yi − p.yj + ui − uj + q.xi,j ≤ q − 1 1 ≤ i , j ≤ p, i 6= j
(10) yi ∈ {0, 1} 1 ≤ i ≤ p
(11) ui integer, ui ≥ 0 1 ≤ i ≤ p
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Linear programming

Problems with rational variables: can be solved in polynomial
time (in the size of the problem)

Problems with integer variables: solved in exponential time in
the worst case

No relaxation in rational numbers seems possible here...
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And, in practice ?

If all processors participate. Use a heuristic to solve the
traveling salesman problem (as Lin-Kernighan)
No guarantee, but excellent results in practice.

General case.

1 Exhaustive search: feasible up to a dozen of processors

2 Greedy heuristic:
- initially take best pair of processors
- for a given ring, try to insert any unused processor in
between any pair of neighbor processors in the ring
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Heterogeneous network (general case)

P1

P3

P2

P4

P1

P3

P2

P4

P1

P3

P2

P4

Heterogeneous platform

P1 P2

P4P3

Virtual ring

Take link sharing into account
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New notations

Set of communications links: e1, ..., en

Bandwidth of link em: bem

There is a path Si from Pi to Psucc(i) in the network

Si uses a fraction si,m of the bandwidth bem of link em

Pi needs a time Dc .
1

minem∈Si si,m
to send a message of size Dc

to its successor
Constraints on the bandwidth of em:

∑
1≤i≤p

si,m ≤ bem

Symmetrically, there is a path Pi from Pi to Ppred(i) in the
network, which uses a fraction pi ,m of the bandwidth bem of
link em
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Toy example: choosing the ring

P1 Q

P4P5

R P2 P3

da
h
g b

c

f
e

P1 Q

P4P5

R P2 P3

da
h
g b

c

f
e

7 processors and 8 bidirectional communications links

We choose a ring of 5 processors:
P1 → P2 → P3 → P4 → P5 (we use neither Q, nor R)
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Toy example: choosing routing paths

P1 Q

P4P5

R P2 P3

da
h
g b

c

f
e

P1 Q

P4P5

R P2 P3

da
h
g b

c

f
e

P1 Q

P4P5

R P2 P3

da
h
g b

c

f
e

From P1 to P2, use links a and b: S1 = {a, b}.
From P2 to P1, use links b, g and h: P2 = {b, g , h}.

From P1: to P2, S1 = {a, b} and to P5, P1 = {h}
From P2: to P3, S2 = {c, d} and to P1, P2 = {b, g, h}
From P3: to P4, S3 = {d, e} and to P2, P3 = {d, e, f }
From P4: to P5, S4 = {f , b, g} and to P3, P4 = {e, d}
From P5: to P1, S5 = {h} and to P4, P5 = {g, b, f }
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Toy example: bandwidth sharing

From P1 to P2 we use links a and b: c1,2 = 1
min(s1,a,s1,b)

.

From P1 to P5 we use link h: c1,5 = 1
p1,h

.

Set of all sharing constraints:
Lien a: s1,a ≤ ba

Lien b: s1,b + s4,b + p2,b + p5,b ≤ bb

Lien c: s2,c ≤ bc

Lien d : s2,d + s3,d + p3,d + p4,d ≤ bd

Lien e: s3,e + p3,e + p4,e ≤ be

Lien f : s4,f + p3,f + p5,f ≤ bf

Lien g : s4,g + p2,g + p5,g ≤ bg

Lien h: s5,h + p1,h + p2,h ≤ bh
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Toy example: final quadratic system

Minimize max1≤i≤5 (αi .Dw .wi + Dc .(ci,i−1 + ci,i+1)) under the constraints

∑5
i=1 αi = 1

s1,a ≤ ba s1,b + s4,b + p2,b + p5,b ≤ bb s2,c ≤ bc

s2,d + s3,d + p3,d + p4,d ≤ bd s3,e + p3,e + p4,e ≤ be s4,f + p3,f + p5,f ≤ bf

s4,g + p2,g + p5,g ≤ bg s5,h + p1,h + p2,h ≤ bh

s1,a.c1,2 ≥ 1 s1,b.c1,2 ≥ 1 p1,h.c1,5 ≥ 1
s2,c .c2,3 ≥ 1 s2,d .c2,3 ≥ 1 p2,b.c2,1 ≥ 1
p2,g .c2,1 ≥ 1 p2,h.c2,1 ≥ 1 s3,d .c3,4 ≥ 1
s3,e .c3,4 ≥ 1 p3,d .c3,2 ≥ 1 p3,e .c3,2 ≥ 1
p3,f .c3,2 ≥ 1 s4,f .c4,5 ≥ 1 s4,b.c4,5 ≥ 1
s4,g .c4,5 ≥ 1 p4,e .c4,3 ≥ 1 p4,d .c4,3 ≥ 1
s5,h.c5,1 ≥ 1 p5,g .c5,4 ≥ 1 p5,b.c5,4 ≥ 1
p5,f .c5,4 ≥ 1
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Toy example: the moral

Problem sums up to a quadratic system if

1 processors are already selected

2 processors are already ordered into a ring

3 communication paths are already known

In other words: a quadratic system if the ring is known.
If the ring is known:

Complete graph: closed-form expression

General graph: quadratic system

Is the more complex network model with link contention worth the
trouble?
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And, in practice ?

Adapt greedy heuristic:

1 Initially: best processor pair
2 For each processor Pk (not already included in the ring)

For each pair (Pi ,Pj) of neighbors in the ring

1 Build graph of unused bandwidths
(without considering the paths between Pi and Pj)

2 Compute shortest paths (in terms of bandwidth) between Pk

and Pi and Pj

3 Evaluate solution

3 Keep best solution found at step 2 and start again

+ refinements (max-min fairness, quadratic solving)
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Is this meaningful ?

No guarantee, neither theoretical, nor practical

Simple solution:
1 build complete graph whose edges are labeled with bandwidths

of best communication paths
2 apply the heuristic for complete graphs
3 allocate bandwidths
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An example of an actual platform (Lyon)

moby canaria

mryi0 popc0 sci0

Hub

Switch

sci3

sci2

sci4

sci5
sci6

sci1
myri1

myri2

Hub

router backbone
routlhpc

Topology

P0 P1 P2 P3 P4 P5 P6 P7 P8

0.0206 0.0206 0.0206 0.0206 0.0291 0.0206 0.0087 0.0206 0.0206

P9 P10 P11 P12 P13 P14 P15 P16

0.0206 0.0206 0.0206 0.0291 0.0451 0 0 0

Processors processing times (in seconds par megaflop)
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Describing the Lyon platform

0

1

32.29

3

32.29

5

32.29

9

32.29

10

32.29

11

32.29

 32.29

 32.29

 32.29

32.29

 32.29

2

7

32.22

8

32.22

32.31

13

32.31

16

 32.31

 32.29

 32.29

 32.29

 32.29

4

15

40.35

32.29

 32.29

 32.29

6

40.35

 32.22

 32.29

 32.29

 32.29 32.31

14

30.51

12

40.35

 32.31

30.51

 4.7

Abstracting the Lyon platform.
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Results

First heuristic building the ring without taking link sharing into
account

Second heuristic taking link sharing into account (and with
quadratic programming)

Ratio Dc/Dw H1 H2 Gain

0.64 0.008738 (1) 0.008738 (1) 0%

0.064 0.018837 (13) 0.006639 (14) 64.75%

0.0064 0.003819 (13) 0.001975 (14) 48.28%

Ratio Dc/Dw H1 H2 Gain

0.64 0.005825 (1) 0.005825 (1) 0 %

0.064 0.027919 (8) 0.004865 (6) 82.57%

0.0064 0.007218 (13) 0.001608 (8) 77.72%

Table: Tstep/Dw for each heuristic on the Lyon and Strasbourg platforms
( numbers in parentheses show size of solution rings)
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And with non dedicated platforms?

Available processing power of each processor changes over time

Available bandwidth of each communication link changes over time

⇒ Need to reconsider current allocation

⇒ Introduce (dynamic) redistribution algorithms
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A possible approach

If actual performance “too much”different from expected
characteristics when building solution

Actual criterion defining “too much” ?

If actual performance “very” different

compute a new ring
redistribute data from old ring to new one
Actual criterion defining “very” ?
Cost of the redistribution ?

If the actual performance is “a little” different

compute new load-balancing in existing ring
redistribute data in existing ring
How to efficiently do the redistribution ?
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Load-balancing

Principle: ring is modified only if this is profitable

Tstep: length of an iteration before load-balancing

T ′
step: length of an iteration after load-balancing

Tredistribution: redistribution cost

niter: number of remaining iterations

Condition: Tredistribution + niter × T ′
step ≤ niter × Tstep

Redistribution algorithms for homo/hetero uni/bi-dir rings

(Well, let’s do this another time . . . )

Yves.Robert@ens-lyon.fr February 8, 2008 Algorithms and scheduling techniques 69/ 134



Introduction Parallel algorithms Scheduling Pipeline workflows Models and real life Conclusion

Lesson learnt?

Realistic networks models: mandatory but less tractable

. . . Need find good trade-offs.
Would be even more complicated with hierarchical architectures /
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Traditional scheduling – Framework

Application = DAG G = (T ,E ,w)

T = set of tasks
E = dependence constraints
w(T ) = computational cost of task T (execution time)
c(T ,T ′) = communication cost (data sent from T to T ′)

Platform

Set of p identical processors

Schedule

σ(T ) = date to begin execution of task T
alloc(T ) = processor assigned to it
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Traditional scheduling – Constraints

w(T’)

time

w(T)

comm(T,T’)

σ(T ) + w(T )σ(T )

T T’

σ(T ′)

Data dependences If (T ,T ′) ∈ E then

if alloc(T ) = alloc(T ′) then σ(T ) + w(T ) ≤ σ(T ′)
if alloc(T ) 6= alloc(T ′) then σ(T ) + w(T ) + c(T ,T ′) ≤ σ(T ′)

Resource constraints

alloc(T ) = alloc(T ′) ⇒
(σ(T ) + w(T ) ≤ σ(T ′)) or (σ(T ′) + w(T ′) ≤ σ(T ))
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Traditional scheduling – Objective functions

Makespan or total execution time

MS(σ) = max
T∈T

(σ(T ) + w(T ))

Other classical objectives:

Sum of completion times
With release dates: max flow (response time), or sum flow
Fairness oriented: max stretch, or sum stretch
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Traditional scheduling – About the model

Simple but OK for computational resources

No CPU sharing, even in models with preemption
At most one task running per processor at any time-step

Very crude for network resources

Unlimited number of simultaneous sends/receives per processor
No contention → unbounded bandwidth on any link
Fully connected interconnection graph (clique)

In fact, model assumes infinite network capacity
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Makespan minimization

NP-hardness

Pb(p) NP-complete for independent tasks and no
communications
(E = ∅, p = 2 and c = 0)
Pb(p) NP-complete for UET-UCT graphs (w = c = 1)

Approximation algorithms

Without communications, list scheduling is a
(2 − 1

p )-approximation
With communications, result extends to coarse-grain graphs
With communications, no λ-approximation in general
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List scheduling – Without communications

Initialization:

Compute priority level of all tasks

Priority queue = list of free tasks (tasks without predecessors)
sorted by priority

While there remain tasks to execute:

Add new free tasks, if any, to the queue.

If there are q available processors and r tasks in the queue,
remove first min(q, r) tasks from the queue and execute them

Priority level

Use critical path: longest path from the task to an exit node

Computed recursively by a bottom-up traversal of the graph
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List scheduling – With communications (1/2)

Priority level

Use pessimistic critical path: include all edge costs in the
weight
Computed recursively by a bottom-up traversal of the graph

MCP Modified Critical Path

Assign free task with highest priority to best processor
Best processor = finishes execution first, given already taken
scheduling decisions
Free tasks may not be ready for execution (communication
delays)
May explore inserting the task in empty slots of schedule
Complexity O(|V | log |V | + (|E | + |V |)p)
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List scheduling – With communications (2/2)

EFT Earliest Finish Time

Dynamically recompute priorities of free tasks
Select free task that finishes execution first (on best
processor), given already taken scheduling decisions
Higher complexity O(|V |3p)
May miss “urgent” tasks on critical path

Other approaches

Two-step: clustering + load balancing
- DSC Dominant Sequence Clustering O((|V | + |E |) log |V |)
- LLB List-based Load Balancing O(C log C + |V |) (C number
of clusters generated by DSC)
Low-cost: FCP Fast Critical Path
- Maintain constant-size sorted list of free tasks:
- Best processor = first idle or the one sending last message
- Low complexity O(|V | log p + |E |)
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Extending the model to heterogeneous clusters

Task graph with n tasks T1, . . . ,Tn.

Platform with p heterogeneous processors P1, . . . ,Pp.

Computation costs:
- wiq = execution time of Ti on Pq

- wi =
∑p

q=1 wiq

p average execution time of Ti

- particular case: consistent tasks wiq = wi × γq

Communication costs:
- data(i , j): data volume for edge eij : Ti → Tj

- vqr : communication time for unit-size message from Pq to
Pr (zero if q = r)
- com(i , j , q, r) = data(i , j)× vqr communication time from Ti

executed on Pq to Pj executed on Pr

- comij = data(i , j) ×
∑

1≤q,r≤p,q 6=r vqr

p(p−1) average communication
cost for edge eij : Ti → Tj
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Rewriting constraints

Dependences For eij : Ti → Tj , q = alloc(Ti ) and r = alloc(Tj):

σ(Ti ) + wiq + com(i , j , q, r) ≤ σ(Tj)

Resources If q = alloc(Ti ) = alloc(Tj), then

(σ(Ti ) + wiq ≤ σ(Tj)) or (σ(Tj) + wjq ≤ σ(Ti ))

Makespan
max

1≤i≤n

(
σ(Ti ) + wi ,alloc(Ti )

)
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HEFT: Heterogeneous Earliest Finish Time

Priority level:

rank(Ti ) = wi + max
Tj∈Succ(Ti )

(comij + rank(Tj)),

where Succ(T ) is the set of successors of T
Recursive computation by bottom-up traversal of the graph

Allocation

For current task Ti , determine best processor Pq:
minimize σ(Ti ) + wiq

Enforce constraints related to communication costs
Insertion scheduling: look for t = σ(Ti ) s.t. Pq is available
during interval [t, t + wiq[

Complexity: same as MCP without/with insertion

Yves.Robert@ens-lyon.fr February 8, 2008 Algorithms and scheduling techniques 83/ 134



Introduction Parallel algorithms Scheduling Pipeline workflows Models and real life Conclusion

What’s wrong?

, Nothing (still may need to map a DAG onto a platform!)

/ Absurd communication model:
complicated: many parameters to instantiate
while not realistic (clique + no contention)

/ Wrong metric: need to relax makespan minimization
objective
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Problem

A

E

G

C

H

D
F

B

Routing sets of messages from sources to destinations

Paths not fixed a priori

Packets of same message may follow different paths
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Hypotheses

A

E

G

C

H

D
F

B

A packet crosses an edge within one time-step

At any time-step, at most one packet crosses an edge

Scheduling: for each time-step, decide which packet crosses any
given edge
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Notation

k

i

l

j

nk ,l

nk ,l
i ,j

nk,l : total number of packets to be routed from k to l

nk,l
i ,j : total number of packets routed from k to l and crossing

edge (i , j)

Yves.Robert@ens-lyon.fr February 8, 2008 Algorithms and scheduling techniques 88/ 134



Introduction Parallel algorithms Scheduling Pipeline workflows Models and real life Conclusion

Lower bound

Congestion Ci ,j of edge (i , j)
= total number of packets that cross (i , j)

Ci ,j =
∑

(k,l)|nk,l>0

nk,l
i ,j Cmax = maxi ,j Ci ,j

Cmax lower bound on schedule makespan
C ∗ ≥ Cmax

⇒ “Fluidified” solution in Cmax?
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Equations (1/2)

A

E

G

C

H

D
F

B

A

E

G

B

A

E

G

C

H

D
F

B

G

H

D

G G

Initialization (packets leave node k):
∑

j |(k,j)∈A

nk,l
k,j = nk,l

Reception (packets reach node l):
∑

i |(i ,l)∈A

nk,l
i ,l = nk,l

Conservation law (crossing intermediate node i):∑
i |(i ,j)∈A

nk,l
i ,j =

∑
i |(j ,i)∈A

nk,l
j ,i ∀(k, l), j 6= k, j 6= l
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Equations (2/2)

Congestion
Ci ,j =

∑
(k,l)|nk,l>0 nk,l

i ,j

Objective function

Cmax ≥ Ci ,j , ∀i , j

Minimize Cmax

Linear program in rational numbers: polynomial-time solution. In
practice use GLPK, Maple, Mupad . . .
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Routing algorithm

Compute optimal solution Cmax, nk,l
i ,j of previous linear

program

Periodic schedule:

Define Ω =
√

Cmax

Use
⌈

Cmax

Ω

⌉
periods of length Ω

During each period, edge (i , j) forwards (at most)

mk,l
i,j =

⌊
nk,l

i,j Ω

Cmax

⌋

packets that go from k to l

Clean-up: sequentially process residual packets inside network
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Performance

Schedule is feasible

Schedule is asymptotically optimal:

Cmax ≤ C ∗ ≤ Cmax + O(
√

Cmax)
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Why does it work?

Relaxation of objective function

Rational number of packets in LP formulation

Periods long enough so that rounding down to integer
numbers has negligible impact

Periods numerous enough so that loss in first and last periods
has negligible impact

Periodic schedule, described in compact form
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Master-worker tasking: framework

Heterogeneous resources

Processors of different speeds
Communication links with various bandwidths

Large number of independent tasks to process

Tasks are atomic
Tasks have same size

Single data repository

One master initially holds data for all tasks
Several workers arranged along a star, a tree or
a general graph
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Application examples

Monte Carlo methods

SETI@home

Factoring large numbers

Searching for Mersenne primes

Particle detection at CERN (LHC@home)

... and many others: see BOINC at
http://boinc.berkeley.edu
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Makespan vs. steady state

Two-different problems

Makespan Maximize total number of tasks processed within a
time-bound

Steady state Determine periodic task allocation which
maximizes total throughput
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Example
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Rule of the gameEquations

M

P1 P2 Pi Pp

w1 w2 wi wp

ci

cpc1

c2

Master sends tasks to workers sequentially, and without
preemption

Full computation/communication overlap for each worker

Worker Pi receives a task in ci time-units

Worker Pi processes a task in wi time-units

Worker Pi executes αi tasks per time-unit

Computations: αiwi ≤ 1

Communications:
∑

i αici ≤ 1

Objective: maximize throughput

ρ =
∑

i

αi
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Solution

Faster-communicating workers first: c1 ≤ c2 ≤ . . .

Make full use of first q workers, where q largest index s.t.

q∑
i=1

ci

wi
≤ 1

Make partial use of next worker Pq+1

Discard other workers

Bandwidth-centric strategy
- Delegate work to the fastest communicating workers
- It doesn’t matter if these workers are computing slowly
- Slow workers will not contribute much to overall throughput
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Example

Fully active

2
10

20
1

3 6 1 1 1

M

3

Discarded

Tasks Communication Computation
6 tasks to P1 6c1 = 6 6w1 = 18
3 tasks to P2 3c2 = 6 3w2 = 18
2 tasks to P3 2c3 = 6 2w3 = 2

11 tasks every 18 time-units (ρ = 11/18 ≈ 0.6)
, Compare to purely greedy (demand-driven) strategy!

5 tasks every 36 time-units (ρ = 5/36 ≈ 0.14)

Even if resources are cheap and abundant,
resource selection is key to performance
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Extension to trees

Fully used node

Partially used node

Idle node

1432

1 1 1

3

0

2

555

26666

5 5

9

10

1
2

1
2

Resource selection based on local information (children)
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Does this really work?

Can we deal with arbitrary platforms (including cycles)? Yes

Can we deal with return messages? Yes

In fact, can we deal with more complex applications (arbitrary
collections of DAGs)? Yes, I mean, almost!
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LP formulation still works well . . .

Tm

file emn
Pj

Pi

Pk

wi

cik

cji

Tn

Conservation law

∀m, n
∑

j

sent(Pj → Pi , emn) + executed(Pi ,Tm)

= executed(Pi ,Tn) +
∑
k

sent(Pi → Pk , emn)

Computations∑
m

executed(Pi ,Tm) × flops(Tm) × wi ≤ 1

Outgoing communications∑
m,n

∑
j

sent(Pj → Pi , emn) × bytes(emn) × cij ≤ 1
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. . . but schedule reconstruction is harder

link12

link21

link13

link31

link24

link42

link34

link43

link23

link32

P4

P3

P2

P1

{χ3 χ4 {{χ1 χ2 {{χ3 χ4 {{χ1 χ2 {{χ3 χ4 {{χ1 χ2 { {χ3 χ4 {{χ1 χ2 {

0 40 80 120 160

A5A4A3A2A1

, Actual (cyclic) schedule obtained in polynomial time

, Asymptotic optimality

/ A couple of practical problems (large period, # buffers)

/ No local scheduling policy
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The beauty of steady-state scheduling

Rationale Maximize throughput (total load executed per
period)

Simplicity Relaxation of makespan minimization problem

Ignore initialization and clean-up phases
Precise ordering of tasks/messages not needed
Characterize resource activity per time-unit:
- which (rational) fraction of time is spent
computing for which application?
- which (rational) fraction of time is spent
receiving from or sending to which neighbor?

Efficiency Optimal throughput ⇒ optimal schedule (up to a
constant number of tasks)

Periodic schedule, described in compact form
⇒ compiling a loop instead of a DAG!
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Lesson learnt?

Resource selection is mandatory

. . . implementation may still be dynamic,
provided that static allocation is enforced by scheduler

Example: demand-driven assignment of enrolled workers
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Scheduling multiple applications

Large-scale platforms not likely to be exploited in dedicated
mode/single application

Investigate scenarios in which multiple applications are
simultaneously executed on the platform
⇒ competition for CPU and network resources
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Target problem

Large complex platform: several clusters and backbone links

One (divisible load) application running on each cluster

Which fraction of the job to delegate to other clusters?

Applications have different communication-to-computation
ratios

How to ensure fair scheduling and good resource utilization?

Yves.Robert@ens-lyon.fr February 8, 2008 Algorithms and scheduling techniques 111/ 134



Introduction Parallel algorithms Scheduling Pipeline workflows Models and real life Conclusion

Linear program

Minimize mink

{
αk
πk

}
,

under the constraints

(1a) ∀C k ,
∑

l

αk,l = αk

(1b) ∀C k ,
∑

l

αl ,k .τl ≤ sk

(1c) ∀C k ,
∑
l 6=k

αk,l .δk +
∑
j 6=k

αj ,k .δj ≤ gk

(1d) ∀li ,
∑

li∈Lk,l

βk,l ≤ max-connect(li )

(1e) ∀k, l , αk,l .δk ≤ βk,l × gk,l

(1f) ∀k, l , αk,l ≥ 0

(1g) ∀k, l , βk,l ∈ N

(1)
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Approach

Solution to rational linear problem as comparator/upper
bound

Several heuristics, greedy and LP-based

Use Tiers as topology generator, and then SIMGRID
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Methodology (cont’d)
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Pruned Network WAN
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Sample full and pruned Tiers topology

distribution

K 5, 7, . . . , 90
log(bw(lk)), log(gk) normal (mean= log(2000), std=log(10))
sk uniform, 1000 — 10000
max-connect, δk , τk , πk uniform, 1 — 10

Platform parameters used in simulation
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Hints for implementation

Participants sharing resources in a Virtual Organization

Centralized broker managing applications and resources

Broker gathers all parameters of LP program

Priority factors

Various policies and refinements possible
⇒ e.g. fixed number of connections per application
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The application

... ...S2 Sk SnS1

w1 w2 wk wn

δ0 δ1 δk−1 δk δn

Consecutive data-sets fed into pipeline

Period Tperiod = time interval between beginning of execution
of two consecutive data sets

Latency Tlatency = time elapsed between beginning and end of
execution for a given data set
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Open problems

Single workflow

Period/latency bi-criteria optimization

Robust mappings

Data-parallel stages (decreases latency)

Replicated stages (decreases period & increases robustness)

Several (concurrent) workflows

Competition for CPU and network resources

Fairness between applications (max-min throughput, max
stretch)

Sensitivity to application/platform parameter changes
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Lesson learnt?

Period, latency, stretch, robustness, fairness and combination
lead to difficult optimization problems

Lot of work for young and talented algorithmicians ,

Example: almost everything yet to be done!
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Knowledge of the platform graph

For regular problems, the structure of the task graph (nodes
and edges) only depends upon the application, not upon the
target platform

Problems arise from weights, i.e. the estimation of execution
and communication times

Classical answer: “use the past to predict the future”

Divide scheduling into phases, during which machine and
network parameters are collected (with NWS)
⇒ This information guides scheduling decisions for next phase
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Experiments versus simulations

Real experiments difficult to drive (genuine instability of
non-dedicated platforms)

Simulations ensure reproducibility of measured data

Key issue: run simulations against a realistic environment

Trace-based simulation: record platform parameters today,
and simulate the algorithms tomorrow, against recorded data

Use SIMGRID, an event-driven simulation toolkit
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SIMGRID traces

server #1

client #1

client #2

client #3

server #2

router

switch

hub

Internet

CPU availability

Network bandwidth

Transient 
Failure X

See http://simgrid.gforge.inria.fr/

Yves.Robert@ens-lyon.fr February 8, 2008 Algorithms and scheduling techniques 123/ 134

http://simgrid.gforge.inria.fr/


Introduction Parallel algorithms Scheduling Pipeline workflows Models and real life Conclusion

Across physical links

Network = directed graph P = (V ,E )

P0

P1

P3

P2

time

recv 2,3P3

T2,3(L)link e2,3

send2,3P2

time

r2,3

r2,3 · L
P3

α2,3

β2,3 · L
link e2,3

s2,3 · L
s2,3P2

time

recv 2,3P3

T2,3(L)link e2,3

send2,3P2

General case: affine model (includes latencies)

Common variant: sending and receiving processors busy
during whole transfer
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Multi-port

Bar-Noy, Guha, Naor, Schieber:
occupation time of sender Pu independent of target Pv

time

recv vPv

Tu,v(L)link eu,v

senduPu

not fully multi-port model, but allows for starting a new transfer

from Pu without waiting for previous one to finish
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One-port

Bhat, Raghavendra and Prasanna:
same parameters for sender Pu, link eu,v and receiver Pv

time

ru,v · L
ru,vPv

βu,v · L
αu,vlink eu,v

su,v · L
su,vPu

two flavors:
- bidirectional: simultaneous send and receive transfers allowed

- unidirectional: only one send or receive transfer at a given

time-step
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Store & Forward, WormHole, TCP

How to model a file transfer along a path?

S

l1

l3

l2

S

l1

l3

l2

S

l1

l3

l2 pi ,j

s

S

l1

l3

l2

∀l ∈  L,
∑

r∈R s.t. l∈r

ρr ≤ cl

Max-Min Fairness maximize min
r∈R

ρr

Proportional Fairness maximize
∑
r∈R

ρr log(ρr )

MCT minimization maximize min
r∈R

1

ρr

TCP behavior Close to max-min.
In SIMGRID: max-min + bound by 1/RTT

Store & Forward : bad model for contentionWormHole : computation intensive (packets), not that realisticAnalytical model
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Bandwidth sharing

Traditional assumption: Fair Sharing

Open i TCP connections, receive bw(i) bandwidth per
connection

bw(i) = bw(1)/i on a LAN

Experimental evidence → bw(i) = bw(1) on a WAN

Backbone links have so many connections that interference
among a few selected connections is negligible

Better model: bw(i) =
bw(1)

1 + (i − 1).γ

γ = 1 for a perfect LAN, γ = 0 for a perfect WAN
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Sample large-scale platform

Primergy

Primergy

backbone link

router

front end

cluster

Accounts for Hierarchy + BW sharing
Assumes knowledge of Routing + Backbone bw + CPU speed
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A first trial

sk

sl

gk

gl

b3

b1

Lk,l

b2

C k

C k
master

C k
router

C l
router

C l
master

C l

Clusters and backbone links
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A first trial (cont’d)

sk

sl

gk

gl

b3

b1

Lk,l

b2

C k

C k
master

C k
router

C l
router

C l
master

C l

Clusters

K clusters C k , 1 ≤ k ≤ K

C k
master front-end processor

C k
router router to external world

sk cumulated speed of C k

gk bandwidth of the LAN link (γ = 1) from C k
master to C k

router

Network

Set R of routers and B of backbone links li

bw(li ) bandwidth available for a new connection

max-connect(li ) max. number of connections that can be
opened

Fixed routing: path Lk,l of backbones from C k
router to C l

router
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How to cope with uncertainties and dynamicity? (1)

Sensibility analysis

Asses the impact of uncertainties on existing solutions

Design robust solutions

Robust optimization
A robust solution remains “close” to optimal for all scenarios

Internet-based computing
No knowledge on task execution times

Minimize risk taken while making any scheduling decision
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How to cope with uncertainties and dynamicity? (2)

Stochastic models

1 What are the relevant stochastic models?
Most characteristics remain to be studied and modeled

2 How can we use them?
Chance-constrained programming?

Other mathematical tools?
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Tools for the road

Forget absolute makespan minimization

Resource selection mandatory

Divisible load (fractional tasks)

Single application: period / latency / power / robustness

Several applications: max-min fairness, MAX stretch

Linear programming: absolute bound to assess heuristics
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Scheduling for large-scale platforms

If platform is well identified and relatively stable, try to:
(i) accurately model hierarchical structure
(ii) design well-suited and robust scheduling algorithms

If platform is not stable enough, or if it evolves too fast,
dynamic schedulers are the only option

Otherwise, grab any opportunity to

inject static knowledge into dynamic schedulers

/ Is this opportunity a niche?
, Does it encompass a wide range of applications?
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