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Introduction (i)

Computational problems in signal processing applications:
Implementation of spectral multiresolution
analysis/synthesis methods for 3D audio:

Cross-talk cancelers design, Multichannel adaptive filters, Massive multichannel

convolutions, . . .

Study and evaluation of optimal and quasi-optimal
detection algorithms in Multiple Input-Multiple Output
(MIMO) communication systems:

Detection algorithms, precodification algorithms, . . .

Practical design of passive components for radio
communication systems (wireless systems, mobile
communication):

BI-RME technique formulation for the accurate and efficientcomputation of

arbitrarily shaped waveguide modes.
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Introduction (ii)

Numerical Linear Algebra addressed problems:
To solve structured linear systems (Toeplitz, block-Toeplitz,
Toeplitz by blocks, blocks, . . . ).
To solve structured least squares problems (Toeplitz,
block-Toeplitz, Toeplitz by blocks, blocks, . . . ).
To compute generalized and ordinary eigenvalues and
eigenvectors (some or all) of structured matrices.
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Introduction (iii)

Requirements
Large and structured matrices.
Conventional computers or clusters of PCs.
Current libraries (LAPACK, ScaLAPACK) don’t provide
good performance.
Parallel computing must be used with some caution.
Heterogeneous parallel computing can be a solution.

Consequences
Methods for computing eigenvalues and eigenvectors must be
carefully selected.
Algorithms should be restructured.

Objective of the presentation
To analyze methods for solving structured eigenvalue
problems on heterogeneous parallel computers.
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Heterogeneous distributed
memory multicomputers (i)

Formally: Set of processors with different computing and
communication capabilities thatwork together closely and can be
viewed as a single computer.

Alternative to expensive tightly-coupled supercomputers.

Great performance-cost ratio.

Typical scenarios:
Clusters of legacy PCs and workstations.
LANs of PCs in a university department or company.
Homogeneous clusters and supercomputers connected
through a LAN.
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Heterogeneous distributed
memory multicomputers (ii)

Heterogeneous parallel architectures and numerical linear algebra
libraries:

There does not exist any numerical linear algebra library
specifically designed for heterogeneous parallel architectures.
Some authors (Beaumont, Kalinov, Lastovetsky, . . . ) have
proposed successful techniques to adapt current
homogeneous libraries (like ScaLAPACK).
Few numerical kernels have been specifically designed for
heterogeneous architectures.
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Heterogeneous distributed
memory multicomputers (iii)

Our heterogeneous cluster consist of 6 nodes with 22 cores:
1 Intel Pentium IV at 1.6 GHz with 256 KB of L2 cache and
1 GB of RAM
1 Intel Pentium IV at 1.7 GHz with 256 KB of L2 cache and
1 GB of RAM
2 Intel Xeon two-processors at 2.2 GHZ with 512 KB of L2
cache and 4 GB of RAM.
2 Intel Itanium II Montecito four-processors dual-core at 1.4
GHZ with 1 MB of instructions L2 cache and 256 KB of data
L2 cache and 8 GB of RAM

Nodes are linked through a switched Gigabit Ethernet network.
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The problem to solve

An increasing number of real passive waveguide components
(filters, multiplexers, . . . ) are composed of the cascaded
connection of arbitrarily shaped waveguides.

Different techniques have been proposed for the accurate analysis
and design of such components (finite elements method,
transmission line matrix, . . . ).

Strong requirements on CPU time and memory storage.
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The problem to solve (ii)

In this work, the modal computation of arbitrary waveguidesis
based on the Boundary Integral - Resonant Mode Expansion
(BI-RME) methoda.

This technique provides the modal cut-off frequencies of an
arbitrary waveguide from the solution of two generalized
eigenvalue problems

Ax = λBx

with some specific characteristics:

MatricesA andB are structured and highly sparse.
Only the real positive eigenvalues contained in a[0,β]
interval are needed.

aConciauro G., Bressan M., Zuffada C.: Waveguide modes via anintegral equation leading to a

linear matrix eigenvalue problem; IEEE Transactions on Microwave Theory and Techniques. (1984)
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The problem to solve (iii)

Structured matricesA andB for a ridge waveguide

M NM N

R

H H

Matrix A Matrix B

RA B

t

M ≫ N
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Classical Approach

The standard algorithm for generalized eigenvalue problems
(Ax = λBx) is theQZ algorithm:

It is not possible to take advantage of the matrix structure in
order to improve its performance.
Under certain conditions (symmetric A and symmetric
positive definite B) the problem can be transformed into a
standard eigenvalue problem (Cy = λy).

Using the Cholesky or theLDLT factorization.
Once the transformation is done theQR iteration or other
classic algorithm can be applied.

Parallel Numerical Algorithms for Heterogeneous ParallelComputers Murcia, June 2007 – p. 12/23



Classical Approach (ii)

For a classic eigenvalue algorithm:

Its temporal cost is of the form:

α+
n

∑
i=1

βi or α+β

α ≡ cost of the matrix tridiagonalization.
βi ≡ cost of extracting the i-th eigenvalue/eigenvector.
β ≡ cost of extracting all the eigenvalues/eigenvectors.

Properties
α ≫ βi.
Parallel tridiagonalization is a highly-coupled parallel
problem.
Not suitable for structured matrices (filling, structure loss
and misuse of the structure for optimization)
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New algorithmic scheme

Our proposal is to implement algorithms for heterogeneous
parallel computers, which temporal cost is of the form:

δ+
m

∑
i=1

εi

δ ≡ cost of splitting the problem intom independent
sub-problems.
εi ≡ cost of solving the i-th sub-problem sequentially.

Properties
δ ≪ εi.
∀ i, j : εi ≃ ε j

Algorithms should take advantage of the structure of the
matrices (if any).
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New algorithmic scheme
applied to eigenproblems

We propose to implement a modified version of the Lanczos’
algorithm for the solution of eigenproblems in heterogeneous
multicomputers.

Splitting of the original problem: based on spectrum partitioning.

λ(C): the set of all the eigenvalues of C (spectrum).
An upper and a lower bound (lb andub) of the set can be
computed by means of the Gershgorin Circle Theorem.

λi ∈ λ(C) → λi ∈ [lb,ub]

The idea is to partition [lb,ub] into m subsets containing the
same number of eigenvalues (approx.).

RI

lb ub
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New algorithmic scheme
applied to eigenproblems (ii)

Partitioning [lb,ub]: Inertia Theorem

Let LαDαLα
t andLβDβLβ

t be theLDLt decomposition of
A−αB andA−βB, respectively.
The number of eigenvalues in[α,β] is

ν(Dβ)−ν(Dα),

whereν(D) denotes the number of negative elements in the
diagonalD.
LDLt decompositions can be computed with a moderated
cost, taking profit from the structure of the matrices.

Based on the Inertia and the Gershgorin circle theorem we have
developed a bisection-like algorithm that performs the spectrum
partitioning.
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New algorithmic scheme
applied to eigenproblems (iii)

Solving the sub-problems: the “Shift-and-Invert” versionof the
Lanczos’ method

Basic Lanczos’ algorithm allows the computation of a
reduced number of extremal eigenvalues (largest or smallest
in magnitude).
Given a real numberσ (the shift), Lanczos’ algorithm can be
applied to the matrix

W = (A−σB)−1B

to extract the eigenvalues of the original problem closer tothe
shift σ.
This variation requires the solution of several linear systems,
with A−σB as coefficient matrix.
System solution cost can be reduced taking profit from the
structure of the matrices.
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Parallelization of the algorithmic scheme

The parallelization of the previous algorithm is quite
straightforward:
1. Apply the bisection-like algorithm to divide the original

problem intom sub-problems.
2. Distribute the sub-problems among thep available processors

and solve them sequentially.

The way the sub-problems are distributed will determine the
work-load balance of the algorithm.

Statically: processorPi gets a number of sub-problems
proportional to itsrelative power.
Dynamically: sub-problems are assigned on demand to the
processors (master-slave).
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Results

We have implemented the previous parallel algorithm to solve the
waveguide analysis problem described before.

In addition we have implemented it for other kinds of structured
matrices:

Toeplitz
Tridiagonal

Note that all of them imply the development of linear system
solvers optimized for the matrix structure.

Several publications have been produced:
1. V.M.García, A.Vidal, V.E.Boria and A.M.Vidal, Efficientand accurate waveguide mode

computation using BI-RME and Lanczos methods. INTERNATIONAL JOURNAL

FOR NUMERICAL METHODS IN ENGINEERING. 2006; 65:1773

2. A.M.Vidal, A.Vidal, V.E.Boria and V.M.García, Parallelcomputation of arbitrarily

shaped waveguide modes using BI-RME and Lanczos methods. COMMUNICATIONS

IN NUMERICAL METHODS IN ENGINEERING. 2006; 23-4:273-284
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Results (ii)
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Implementation in PC Clusters of a Lanczos-based Algorithmfor an Electromagnetic

Eigenvalue Problem. ISPDC 2006: 296-300
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Heterogeneous Parallel Approach. WSEAS TRANSACTIONS ON MATHEMATICS. 2007;

4-6: 587-594

5 Antonio M. Vidal, Víctor M. García, Pedro Alonso, Miguel O.Bernabeu: Parallel

Computation of the Eigenvalues of Symmetric Toeplitz Matrices through Iterative Methods.

JOURNAL OF PARALLEL AND DISTRIBUTED COMPUTING. Under revision.

6 P.Alonso and J.M.Badía and A. M.Vidal, An Efficient and Stable Parallel Solution for

Non-Symmetric Toeplitz Linear Systems, LNCS 3402:685-692, 2005.

7 P.Alonso and J.M.Badía and A. M.Vidal, An Efficient Parallel Algorithm to Solve

Block-Toeplitz systems, The Journal of Supercomputing 32:251-278, 2005.

8 P.Alonso and A.L.Lastovetsky and A.M.Vidal, A Parallel Algorithm for the Solution of the

Deconvolution Problem on Heterogeneous Networks, HeteroPar’06: Fifth International

Workshop on Algorithms, Models and Tools for Parallel Computing on Heterogeneous
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Results (iii)

Some conclusions extracted from the previous citations:
The method parallelizes extremely well, achieving close to
optimum speedups [5]:
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Scaled speedup of FSTW Lanczos’ parallel algorithm[5] solving Toeplitz

Eigenproblems.
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Results (iv)

Some conclusions extracted from the previous citations:
Due to the optimal use of the structure of matrices, our
implementations can solve larger problems that current
libraries (LAPACK, ScaLAPACK) cannot [2].
Based on the cost modelδ+∑m

i=1 εi of our parallel algorithm
[4]:

If ∀ i, j : εi ≃ ε j both static and dynamic work-load
balance algorithms achieve good performance.
If ∃ i, j : εi ≫ ε j only the dynamic algorithm can ensure a
correct work-load balance.
These situations will depend on the distribution of the
eigenvalues along the spectrum (uniform distribution,
clusters of eigenvalues, hidden eigenvalues, . . . )
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