
Using metaheuristics in a parallel computing

course?

Ángel-Luis Calvo, Ana Cortés, Domingo Giménez, Carmela Pozuelo, and
Miguel-Ángel Rodŕıguez

Departamento de Informática y Sistemas, Universidad de Murcia, Spain
angelluiscalvo@gmail.com, acc8@alu.um.es, domingo@dif.um.es,

carmela@pozuelo.org, mangelrg21@gmail.com

Abstract. In this paper the use of metaheuristics techniques in a paral-
lel computing course is explained. In the practicals of the course different
metaheuristics are used in the solution of a mapping problem in which
processes are assigned to processors in a heterogeneous environment, with
heterogeneity in computation and in the network. The parallelization of
the metaheuristics is also considered.

1 Introduction

This paper presents a teaching experience in which metaheuristic and parallel
computing studies are combined. A mapping problem is proposed to the students
in the practicals of a course of “Algorithms and parallel programming” [1]. The
problem consists of obtaining an optimum processes to processors mapping on a
heterogeneous system. The simulated systems would present heterogeneity both
in the computational and network speed, and the processes to map constitute
a homogeneous set, which means a HoHe (Homogeneous processes in Heteroge-
neous system) model is represented [2]. The mapping problem is NP [3], and it
can be solved approximately through heuristics [4–6]. Each student must pro-
pose the solution of the mapping problem with some metaheuristic, so studying
the characteristics of this metaheuristic and of the computation in heterogeneous
environments.

The paper is organized in the following way: section 2 explains the course
in which the experience has been carried out; section 3 presents the mapping
problem; in section 4 the application of some of the metaheuristics considered
to that problem is explained, including the parallelization of the metaheuristics;
finally, section 5 summarizes the conclusions and outlines possible future studies.

2 Organization of the course

The experience has been carried out in an “Algorithms and Parallel Comput-
ing” course. This course is part of the fifth year of the studies in Computer

? This work has been funded in part by the Consejeŕıa de Educación de la Comunidad
de Murcia, Fundación Séneca, project number 02973/PI/05.

2

Science, at the University of Murcia, in Spain. In previous years, the students
have studied Algorithms and Data Structures, Computer Architecture (includ-
ing multicomputers), Concurrent Programming and Artificial Intelligence. The
course is optional, so the students are high level students who are interested
in the subject. This, together with the fact that a reduced number of students
(approximately fifteen per year) take the course, means that the teaching is per-
sonalized and focused on the work of the students. They do different studies
and practicals: preparation of a presentation about some algorithmic technique,
both sequential and parallel; solution and theoretical and experimental study of
an algorithm to solve a challenging problem sequentially; and obtaining parallel
versions (in shared memory with OpenMP and in message-passing with MPI)
of the previously developed sequential algorithms. This is the first time the stu-
dents work with parallel programming. The course lasts one semester and it has
sequential and parallel parts, which means the parallelism is studied in approx-
imately two months. This reduced time together with the difficulty of an initial
approach to parallelims means that the goal is to introduce the students to the
problems and tools of parallelism, but we do not expect them to be able to de-
velop new algorithms and carry out detailed experiments at this stage, but they
must study and program available algorithms, to adjust them to the proposed
problem, to design significant experiments and to draw correct conclusions. All
the information of the course (including slides of the lessons and the presenta-
tions of the students) can be found at http://dis.um.es/˜domingo/app.html. In
this paper we analyze the practical proposed for the first semester of the course
2006-2007.

The course centers on the solution of challenging computational problems.
Thus, approximate and heuristics methods are studied, as is matricial compu-
tation, because in some of the cases such problems are matricial and numerical.
Parallel programming is studied because it is used in the solution of today’s
highly challenging problems. Thus, the topics of the course are:

– Introduction to complexity of problems.
– Probabilistic algorithms.
– Metaheuristics.
– Matricial algorithms.
– Models of parallel programming.
– Analysis of parallel algorithms.
– Parallel algorithms.

First, the difficulties to solve some problems in a reduced time is stated.
Then, some approximate, heuristics or numerical sequential algorithms are stud-
ied, and finally, the basics of parallel programming are analysed. Each student
will develop sequential and parallel algorithms for the solution of a challenging
problem. The proposed problem is a mapping problem where a set of identical
processes is assigned to processors in a heterogeneous system. This is a NP-
complete problem [4, 3], whose solution can be addressed by heuristics methods
[4–6]. So, the students must tackle a challenging problem in the field of parallel

3

programming, and they will work with topics in two parts (sequential approxi-
mate methods and parallel computing) of the syllabus. The methods proposed
to solve this problem are:

– Backtracking with pruning based on heuristics (possibly pruning nodes which
could lead to the optimum solution).

– Backtracking with tree traversal guided by heuristics.
– Branch and Bound with pruning based on heuristics (pruning nodes which

could lead to the optimum).
– Probabilistic algorithms.
– Hill climbing.
– Tabu search.
– Scatter search.
– Genetic algorithms.
– Ant colony.
– Simulated annealing.

There are a lot of books on algorithms [7–9] and metaheuristics [10, 11] which
can be consulted by the students, and also a lot of web pages to consult for more
specific information.

Each student makes two presentations: one on the general ideas of the tech-
nique assigned, and the other on the parallelization with OpenMP and MPI of
some algorithm which implements this technique. The presentations are previous
to the practical work, so that the students can exchange ideas. The collaboration
of the students is fostered. They could exchange ideas about some parts of the
problem (the representation of solutions and nodes, the general scheme of the
algorithms, schemes of metaheuristics, possible combinations of techniques, ...),
and the experimental comparison of the different techniques developed by the
students is positively valued in the final evaluation of the practical. In the first
presentation, the technique is analysed and different ways of applying the tech-
nique to the proposed problem are considered. The students and the professor
discuss alternatives. Additionally, at least two individual tutorials with each stu-
dent would be organized, prior to each presentation. In the second presentation
different paralelization alternatives are presented, and discusion follows.

3 The assignation problem

The problem proposed is a simplified version of a mapping problem in which the
execution time of a parallel homogeneous algorithm (an algorithm in which all
the processes work with the same amount of data and have the same computa-
tional cost) is used to obtain the mapping in a heterogeneous system with which
the lowest possible execution time is achieved. This is a HoHe (homogeneous dis-
tribution of data and heterogeneous distribution of processes) approach, which
could be preferable to a HeHo (heterogeneous distribution of data and homo-
geneous distribution of processes) approach because with the former it is not
necessary to redesign widely tested and used parallel algorithms [12].

4

The method was proposed in [13], and applied to iterative parallel schemes
[14] and to matrix decompositions [15]. It was explained (simplified) to the stu-
dents after the study of the topics about problem complexity, probabilistic algo-
rithms and metaheuristics, and the papers in which the method was introduced
and applied, along with other related papers, were made available to students.
The method is summarized below.

The execution time of a parallel algorithm is modelled as a function of some
algorithmic and system parameters [16]:

t(s) = f(s, AP, SP) (1)

where s represents the problem size.
The system parameters (SP) represent the characteristics of the system, and

can be the cost of an arithmetic operation, or the cost of a particular arithmetic
operation, the start-up time (ts) and the word-sending time (tw) of communica-
tions.

The algorithmic parameters (AP) are those which can be modified to obtain
faster execution times. Some typical parameters in homogeneous systems are
the number of processors to use from those available, or the number of rows and
columns of processors in mesh algorithms. Our goal is to obtain values of the
algorithmic parameters close to those which produce the lowest execution time.

The execution time model considered has the form:

t(s, D) = tctcomp(s, D) + tststart(s, D) + twtword(s, D) (2)

where s represents the problem size, D the number of processes used in the
solution of the problem, tc the cost of a basic arithmetic operations, tcomp the
number of basic arithmetic operations, ts and tw the start-up and the word-
sending time, tstart the number of communications and tword the number of
data communicated.

In a homogeneous environment the values of tc, ts and tw are the same in the
different processors, and the the number of processes and the logical topology to
use are selected to minimize the value of formula 2 (The parameters representing
the topology would appear in tcomp, tstart and tword.)

In a heterogeneous system it is also necessary to select the number of pro-
cesses to use (D) and the number of processes assigned to each processor. These
numbers are stored in an array d = (d1, d2, . . . , dP), with P being the number of
processors in the system. The values of tc, ts and tw are affected by the number of
processes assigned to each processor, and are a function of d (tc (d1, d2, . . . , dP),
ts (d1, d2, . . . , dP) and tw (d1, d2, . . . , dP)). The costs of a basic arithmetic op-
eration in each one of the processors in the system are stored in an array tc

with P components, where tci
is the cost in processor i. And the costs of ts and

tw between each pair of processors are stored in two arrays ts and tw of sizes
P × P , with tsij

and twij
the start-up and word-sending times from processor

i to processor j. These arrays may be non symmetric because communications
between i and j and between j and i could have different costs. The values tsii

and twii
correspond to the costs between two processes in the same processor.

5

The execution time model for a certain assignation of processes, d, in a system
characterized by the arrays tc, ts and tw would be that of equation 2, but with
the values of tc, ts and tw obtained from the formulae:

tc = max{ditci
}, tsij

= max
di 6=0,dj 6=0

{tsij
}, twij

= max
di 6=0,dj 6=0

{twij
} (3)

In the model the cost of a basic operation in a processor is proportional to the
number of processes in the processor, and no interferences are considered between
processes in the same processor. Obviously, other more accurate models could
be considered, but this simplified model can be used successfully in several cases
[13, 15].

Obtaining an optimum mapping of processes to processors (the mapping with
the lowest execution time with the model given by formulae 2 and 3) becomes a
tree traversal problem if we consider the tree of all the possible mappings where
each node has associated the modelled time corresponding to the mapping rep-
resented by the node. Figure 1 shows one such tree, with P = 3. Each level
represents the possible processors to which a process can be assigned (level i

corresponds to process i). There is no limit to the number of processes and the
height of the tree. Because the processes are all equal, the tree is combinatorial,
and because more than one process can be assigned to a processor, it includes
repetitions. The tree is a logical tree which it is not necessary to store in mem-
ory, although in some methods it could be necessary to store a part. For some
techniques it could be better to consider a permutational tree, for example if the
technique works with a set of solutions, a permutational tree would facilitate the
development of efficient routines, because it would not be necessary to include
the constraints to ensure only nodes in the combinatorial tree are explored. The
form of the logical tree, and the representation of the tree (or part of the tree)
or the set to work with must be decided by the student.

Fig. 1. Tree of the mappings of identical processes in a system with three processors.

6

Each student analyses the application to this mapping problem of an exact
method with some heuristic, or of a metaheuristic technique.

First, the representation of the solutions must be decided. Each node in the
solutions tree could be represented in at least two forms. In a representation with
a value for each level, the grey node in figure 1 would be stated by (1, 2, 2, . . .),
with no limit to the number of components, but a limit must be established.
Because all the processes are equal, it is also possible to store the number of
processes assigned to each processor. So, the grey node in the figure is represented
by (1, 2, 0).

Sequential and parallel algorithms must be developed and studied both the-
oretically and experimentally. The study would include the analysis of how the
use of parallel computing contributes to reduce the execution time and/or the
goodness of the solution. In order to have comparable results they must obtain
experimental results with at least the functions:

tc
n2

5p
+ ts

p(p − 1)

2
+ tw

n(p − 1)

2
(4)

which could correspond to a version of a parallel dynamic programming scheme
[13], and:

tc

(

2

3

n3

p
+

n2

√
p

)

+ ts2n
√

p + tw
2n2

√
p

(5)

which could correspond to a version of a parallel LU decomposition [15]. Futher-
more, the experiments should be carried out with the values of the system pa-
rameters in the following ranges: 1 < tc < 5, 4 < tw < 40 and 20 < ts < 100.
Small values of ts and tw would simulate the behaviour of shared memory mul-
ticomputers, medium values would correspond to distributed memory systems,
and large values to distributed systems.

4 Application of metaheuristics to the mapping problem

In this section the results obtained with four of the methods are shown. Three
of the methods are metaheuristics methods (genetic algorithms, tabu search and
simulated annealing) and the other is a backtracking with pruning based in
heuristics where a node which leads to the optimum solution could be pruned.
Sequential, OpenMP and MPI versions are developed in each case.

The goal is to obtain a mapping with an associated modelled time close to
the optimum, but with a reduced assignation time, because this time would be
added to the execution time of the routine for which the mapping is calculated.
Thus, the time to optimize would be the sum of the assignation and the modelled
execution times.

In the sequential algorithms the stress is put on the high algorithmic repre-
sentation which allows us to obtain different versions only by changing a routine
in the scheme. For metaheuristic techniques a general scheme is studied [18].
One such scheme is shown in algorithm 1.

7

Algorithm 1: General scheme of a metaheuristic method.

Inicialice(S);
while not EndCondition(S) do

SS =ObtainSubset(S);
if |SS| > 1 then

SS1 =Combine(SS);
end

else
SS1 = SS;

end

SS2 =Improve(SS1);
S =IncludeSolutions(SS2);

end

The parallel versions would allow us to obtain better mapping with the same
assignation time, or mapping with similar modelled time but with a lower assig-
nation time.

The values of the communication parameters (ts and tw) are obtained from
two-dimensional arrays. Thus, when large systems (distributed systems) are sim-
ulated, in OpenMP the parallelization of this computation could give satisfactory
results, because the system is large and, consequently, so is the computation in
the loop. But in general it is normally better to parallelize at the highest possible
level.

4.1 Backtracking with node pruning

Backtracking methods were used for this mapping problem in [13]. For the simu-
lation of small systems backtracking was satisfactory, but for large systems huge
assignation times were necessary. So, the work of the student was:

– For the sequential method:

• Initially, to study backtracking methods to apply them to optimization
problems. For that, typical books about algorithms were consulted [7, 8].

• To understand the mapping problem and the increment of the assigna-
tion time when backtracking is used for large systems, which makes the
backtracking impracticable in most cases.

• To develop a backtracking scheme for the proposed mapping problem.
The scheme should include a pruning routine which might be easily sub-
stitutable to experiment with different pruning techniques.

• To identify possible techniques to eliminate nodes which in some of the
cases would not lead to the optimum mapping. The most representative
techniques were:

PT1 The tree is searched until a maximum level (the tree of possible
mapping has not a level limit because there is no limit in the number
of processes), and nodes are not pruned. This method is included

8

as a reference which ensures the optimum mapping, supposing the
number of processes is lower than the tree level.

PT2 At each step of the execution the lowest value (GLV) of the mod-
elled execution time of the nodes generated is stored. To decide if a
node is pruned a “minimum value” (NMV) is associated to it. When
NMV > GLV the node is pruned. In a node corresponding to p pro-
cesses, NMV is obtained with a greedy method. From the execution
time associated to the node new values are obtained by substituting
in the model p by p + 1, p + 2, ... while the value decreases. NMV

is taken as the minimum of of these values.
PT3 NMV is calculated in a node by substituting in the formula the value

of the number of processes by the maximum speed-up achievable. For
example, in node (0,2,0), with a tree like that in figure 1, the first
processor will not participate in the computation, and with tc =
(1, 2, 4), the relative speed-ups would be sr = (1, 0.5, 0.25), and the
maximum achievable speed-up is 0.75, and this value is used instead
of p.

PT4 The same value as in the previous case is used for p in the compu-
tation part, and the communication part does not vary.

• To carry out experiments to compare the results obtained with the differ-
ent pruning techniques. Initially experiments were carried out for small
simulated systems (between 10 and 20 processors). The best results were
obtained with PT3. This technique was used in successive experiments.
The main conclusion was that for small systems backtracking with prun-
ing can be used without a large execution time and obtaining a modelled
time not far from the optimum. For big systems, the mapping time is
too large to be applicable in a real context. Parallelism could contribute
to reduce the mapping time, so making the technique applicable.

– Different schemes were considered to obtain parallel versions, and finally a
master-slave scheme was used:
• An OpenMP version is obtained in the following way: the master gen-

erates nodes until a level; slaves are generated and all the threads do
backtracking from the nodes assigned cyclically to them.

• The MPI version works in the same way, but in this case the master
processor sends nodes to the slave processors and these send back the
results to the master.

• The sequential and parallel versions are compared. There is no impor-
tant variation in the modelled time. The speed-up achieved when using
parallelism is far from the optimum, and this is because independent
backtrackings are carried out, which means less nodes are pruned with
the parallel programs.

4.2 Genetic algorithm

Genetic algorithms are possibly the most popular metaheuristic techniques. The
students saw this technique on a previous course on Artificial Inteligence. The
work of the student was:

9

– For the sequential method:

• To consult some of the books about genetic algorithms [19] and the
numerous stuff in the web.

• To understand the mapping problem and to identify population and
individual representations to apply genetic algorithms to the problem.

• To identify how the routines in algorithm 1 could be for the genetic
scheme.

• To develop a genetic scheme at a high level. The scheme must allow to
easily change some parameters (i.e. number of individual in the pobla-
tion, number of iterations to converge, ...) or routines (i.e. mutation,
combination, ...).

• To experimentally tune the values of the parameters and the routines to
apply (modifing them with in the high level scheme developed) to the
mapping problem. The principal conclusion was that to obtain a reduced
assignation time (and so a version applicable to the mapping problem) it
is necessary to reduce the number of individuals and the number of iter-
ations to achieve the convergence, but on the other hand this reduction
would produce a reduction in the goodness of the solution. Satisfactory
results (both for the assignation time and the goodness of solution) are
obtained from experiments with 10 individuals and with convergence af-
ter 10 iterations with no improvement. In any case, genetic algorithms
do not seem to be the most adequate metaheuristica technique for this
problem, because normally the size of the population is large and that
produce a large assignation time.

– About the parallel versions:

• The OpenMP program works by simply parallelizing the combination of
the population.

• From the different parallel genetic schemes [20], the island scheme was
selected for the message-passing version. The number of generations to
exchange information between the islands is one parameter to be tuned.

• The sequential and parallel versions are compared. With OpenMP the
same mappings are found, but with an important reduction in the assig-
nation time. In MPI this time is not reduced substantially, but better
mappings are normally obtained.

4.3 Tabu search

While genetic algorithms make a global search, tabu search is a local search
technique which uses memory structures to guide the search. The students saw
this technique on a previous course on Artificial Intelligence. The work of the
student was:

– For the sequential method:

• To consult some of the books about metaheuristics methods [10, 11] and
the numerous stuff in the web.

10

• To understand the mapping problem and to identify set and element
representations to apply tabu search to the problem.

• To identify how the routines in algorithm 1 would be for tabu search.
• To develop a tabu search at a high level. The scheme must allow easy

change of some parameters (i.e. number of iterations a movement is tabu,
feasibility value of a stage depending on the frequency of the movement,
number of iterations to converge, ...) or routines (i.e. generation of the
first stage, ...).

• To experimentally tune the values of the parameters and the routines
to apply (modifying them in the high level scheme) to the mapping
problem. Satisfactory results are obtained when: the number of iterations
a movement is tabu is equal to half the number of simulated processors
(P); the initial stage is obtained by assigning P processes to the fastest
processors; the number of iterations to begin the diversification phase is
three quarters of the maximum number of iterations, ...

– About the parallel versions:

• The OpenMP program works by selecting at each step a number of nodes
to explore equal to the number of available processors.

• For the MPI version, different tabu techniques have been studied [17].
A pC/RS/MPDS technique has been used: each process controls its own
search; knowledge is not shared by the processes; multiple initial solu-
tions are used; and different search strategies are used. To diversify the
search, some processes start with heuristic solutions and others with
ramdom solutions, and the number of iterations a movement is tabu
depends on the number of the process.

• The sequential and parallel versions are compared. In OpenMP the
speedup is satisfactory, and in some cases superlinear. In MPI the time is
not reduced substantially, and only a small improvement in the mappings
is obtained. A small reduction in the execution time can be achieved by
reducing the number of iterations in the MPI version.

4.4 Simulated annealing

Simulated annealing is also a local search technique. The students saw this tech-
nique in a previous course on Artificial Intelligence. The work of the student
was:

– For the sequential method:

• To consult some of the books about metaheuristics methods [10, 11] and
the numerous stuff in the web.

• To understand the mapping problem and to identify set and element
representations to apply simulated annealing to the problem.

• To identify how the routines in algorithm 1 would be for simulated an-
nealing.

11

• To develop a simulated annealing at a high level. The scheme must allow
to easily change some parameters (i.e. initial temperature, cardinality of
the neighborhood set, ...) or routines (i.e. generation of the initial node,
neighborhood, cooling function, ...).

• To experimentally tune the value of the parameters and the routines
to apply (modifying them in the high level scheme developed) to the
mapping problem. Satisfactory results are obtained when the cardinality
of the neighborhood set is set to 10. For different execution time models
satisfactory mappings and with a reduced execution time are obtained for
different values of the initial temperature and different cooling functions.
So, no conclusions are obtained at this point.

– About the parallel versions:

• The OpenMP program works by parallelizing the computation of the
actual values of the system parameters (tc, ts and tc).

• As in the tabu search, because the search is local, to parallelize at a
high level different search are carried out in the different processes. The
best solution in each process is communicated to the other processes
periodicaly, and each process continues with the best solution at this
moment.

• The sequential and parallel versions are compared. In OpenMP the par-
allelism is exploited at a low level, and a reduction of the mapping time
is achieved for large problem sizes. In MPI the reduction in the map-
ping time is small, and the modelled time is a little better than in the
sequential case.

5 Conclusions and possible future studies

The paper presents a teaching experience using metaheuristics in combination
with parallel computing in a course of “Algorithms and Parallel Programming”.
With this combination the students work at the same time with two of the topics
of the course, the importance of approximate methods and heuristics is better
understood when working with a challenging problem like the one proposed,
and the difficulty and importance of the mapping problem is better understood
working in the problem with a metaheuristic approach. Futhermore, parallel pro-
gramming is introduced using the same metaheuristics with which the mapping
problem is tackled, and the parallelism at different levels and in shared memory
and message-passing is considered. In addition, because all the students work
with the same mapping problem, but each student works in a different mapping
algorithm, collaboration between the students and the common enrichment is
fostered.

This first experience has been very positive, and so it will be continued in
successive courses. At the moment other mapping problems in the field of par-
allel computing are being considered: the mapping of a tasks graph to a graph
representing a hierarchical cluster; the mapping of a loop of tasks with different
costs to a system with computational and memory heterogeneity, among others.

12

References

1. Web page of the Algorithms and Parallel Computing course at the University of
Murcia, http://dis.um.es/˜domingo/app.html

2. A. Kalinov and A. Lastovetsky, Heterogeneous Distribution of Computations While
Solving Linear Algebra Problems on Network of Heterogeneous Computers, Jour-
nal of Parallel and Distributed Computing, 61 (4), 2001, pp 520-535.

3. H. Lennerstad and L. Lundberg, Optimal Scheduling Results for Parallel Comput-
ing, SIAM News, 1994, pp 16-18.

4. W. Zhao and K. Ramamritham, Simple and Integrated Heuristic Algorithms for
Scheduling Tasks with Time and Resource Constrains, The Journal of Systems
and Software, 7 (3), 1987, pp 195-205.

5. S. Fujita, M. Masukawa and S. Tagashira, A Fast Branch-and-Bound Scheme
for the Multiprocessor Scheduling Problem with Communication Time, in: Pro-
ceedings of the 2003 International Conference on Parallel Processing Workshop
(ICPPW’03), Kaohsiung, Taiwan, 2003, pp 104-111.

6. G. Sabin, R. Kettimuthu, A. Rajan and P. Sadayappan, Scheduling of Parallel
Jobs in a Heterogeneous Multi-Site Environment, in: D. G. Feitelson, L. Rudolph
and U. Schwiegelshohn, eds., Job Scheduling Strategies for Parallel Processing, 9th
International Workshop, Seattle, 2003, Lecture Notes in Computer Science, vol.
2862, pp 87-104.

7. G. Brassard and P. Bratley. Fundamentals of Algorithms, Prentice-Hall, 1996.
8. T. H. Cormen, C. E. Leiserson and R. L. Rivest Introduction to Algorithms, MIT

Press, 1991.
9. D. Giménez, J. Cercera, G. Garćıa y N. Maŕın, Algoritmos y Estructuras de Datos,

Vol II, Algoritmos, Diego Maŕın, 2003.
10. J. Dréo, A. Pétrowski, P. Siarry and E. Taillard. Metaheuristics for Hard Opti-

mization, Springer, 2005.
11. Juraj Hromkovič. Algorithmics for Hard Problems, Second Edition, Springer, 2003.
12. A. Kalinov and S. Klimov, “Optimal mapping of a parallel application processes

onto heterogeneous platform”, Proceedings of the 19th International Parallel and
Distributed Processing Symposium (IPDPS’05), Denver, Colorado, USA, 2005.

13. J. Cuenca, D. Giménez and J. P. Mart́ınez-Gallar, Heuristics for work distribu-
tion of a homogeneous parallel dynamic programming scheme on heterogeneous
systems, Parallel Computing 31 (2005) 771-735.

14. J. P. Mart́ınez, F. Almeida and D. Giménez, Mapping in heterogeneous systems
with heuristical methods, Workshop on state-of-the-art in Sci. Par. Comp., Ume̊a,
Sweden, June 18-21, 2006.

15. J. Cuenca, L. P. Garćıa, D. Giménez and J. Dongarra, Processes Distribution of
Homogeneous Parallel Linear Algebra Routines on Heterogeneous Clusters, in Proc.
IEEE Int. Conf. on Cluster Computing, IEEE, HeteroPar05, 27-30 September 2005,
Boston, Massachusetts.

16. J. Cuenca, D. Giménez and J. González, Architecture of an Automatic Tuned
Linear Algebra Library, Parallel Computing, 30 (2), 2004, pp 187-220.

17. T. G. Crainic, M. Gendreau and J. Y. Potvin, Parallel Tabu Search, in Parallel
Metaheuristics, E. Alba (ed.), John Wiley & Sons, 2005.

18. G. R. Raidl, A unified view on hybrid metaheuristics, in Hybrid Metaheusistics,
Third International Workshop, Gran Canaria, October 2006, pp 1-12.

19. Z. Michalewicz, Genetic Algorithms+Data Structures=Evolution Programs,
Springer-Verlag, 1992.

13

20. G. Luque, E. Alba, B. Dorronsoro, Parallel Genetic Algorithms, in E. Alba (ed.)
Parallel Metaheuristics. A New Class of Algorithms, chapter 5, Wiley, 2005.

