Improving the model in a hierarchy of libraries for self-optimization

Luis-Pedro García

Servicio de Apoyo a la Investigación Tecnológica Universidad Politécnica de Cartagena, Spain luis.garcia@sait.upct.es

Outline

- Introduction
- Self-Optimised Linear Algebra Routine Samples
- Experimental Results
- Conclusions

- Our Goal: to obtain linear algebra parallel routines with autooptimization capacity
- The approach: model the execution time of the routine to tune taking advantage of the natural hierarchy existing in linear algebra programs
- The basic idea is to start from lower level routines (multiplication, addition, etc.) to model the higher level ones (Strassen multiplication, parallel multiplication, LU, QR, Cholesky, etc).

In this talk:

- A remodelling stage is proposed if the information at one level is not accurate enough.
- This new model will be built using polynomial regression.

- Theoretical and experimental study of the algorithm. AP selection.
- In linear algebra parallel routines, typical AP and SP are:
 - *b*, $p = r \ge c$ and the basic library
 - $\blacksquare k_1, k_2, k_3, t_s \text{ and } t_w$

An analytical model of the execution time
 T(n) = f(n, AP, SP) = n³k3 (dgemm)

Remodelling de Linear Algebra Routine (LAR)
 Designing a polynomial scheme from the original model for different combinations of n and AP:

 $T(n,AP) = a_0 n3/p + a_1 n3^*p + a_2 n3 + a_3 n2/p + a_4 n2^*p + a_5 n2 + \dots$

The coefficients $a_{0,}a_{1,}a_{2,}$... must be calculated

In order to determine these coefficients, four different methods are proposed:

FI-ME: FIxed Minimal Executions
VA-ME: VAriable Minimal Executions
FI-LS: FIxed Least Square
VA-LS: VAriable Least Square

Self-Optimised LAR

Strassen Matrix-Matrix multiplication

$$T = 7^{l} t_{mult} \left(\frac{n}{2^{l}}\right) + 18 \sum_{i=1}^{l} 7^{i-1} t_{add} \left(\frac{n}{2^{i}}\right)$$

 t_{mult}(n/2^l): Theoretical execution matrix multiplication. BLAS3 function DGEMM
 t_{add}(n/2ⁱ): Theoretical execution matrix addition. BLAS1 function DAXPY

Systems:

Xeon: Linux Intel Xeon 3.0 GHz workstation Alpha: Unix HP-Alpha 1.0 GHz workstation Models for DGEMM and DAXPY Good Results with FI-LS method ■ DGEMM: Third order polynomial (20 samples) $n_{\min} = 500, n_{\max} = 10000, n_{inc} = 500$ DAXPY: Sixth order polynomial (31 samples) $n_{\min} = 64, n_{\max} = 2000, n_{\inf} = 64$

• Testing de Model in Xeon. Time in seconds.

n	1	Mod.	Exp.	Dev. (%)
3072	1	11.75	12.86	8.58
3072	2	13.90	13.63	1.99
3072	3	37.04	15.76	135.06
4096	1	27.21	29.71	8.41
4096	2	28.59	30.10	5.02
4096	3	48.76	33.34	46.26
5120	1	53.14	56.83	6.51
5120	2	53.53	56.43	5.13
5120	3	71.08	60.19	18.09
6144	1	96.48	96.32	0.17
6144	2	95.39	93.69	1.82
6144	3	110.40	98.39	12.21

Testing de Model in Alpha. Time in seconds.

n	1	Mod.	Exp.	Dev. (%)
3072	1	29.96	29.70	0.89
3072	2	28.54	27.82	2.57
3072	3	17.55	27.61	36.46
4096	1	69.85	70.85	1.43
4096	2	66.04	64.55	2.30
4096	3	57.82	62.56	7.58
5120	1	135.03	134.67	0.26
5120	2	125.76	123.38	1.92
5120	3	118.12	118.45	0.28
6144	1	229.79	232.27	1.07
6144	2	211.10	210.88	0.11
6144	3	201.15	199.33	0.92

- The optimal value of AP, vary for different systems and problem sizes.
- In Xeon and for n = 5120 the model make a wrong prediction, but the execution time is only 0.71 % higher.
- However, in Xeon, the deviation ranged from 0.17 % to 135.06 %:

IT IS NECESSARY TO BUILD AN IMPROVED MODEL

The scheme consists of defining a set of third grade polynomial functions from the theoretical model:

$$T = 2 \times 7^{l} \left(\frac{n}{2^{l}}\right)^{3} M(l) + \frac{18}{4} n^{2} A(l) \sum_{i=1}^{l} 7^{i-1} \left(\frac{7}{4}\right)^{i-1}$$

M(l) and A(l) must be calculated. For each l, n varies and the values of M(l) and A(l) are obtained by least squares.

Now the set of values for M(l) and A(l) can be approximated by a polynomial in l and thus we have a single model for any combination of n and l.
 M(l) is approximated by a second grade polynomial M(l) = m₀ + m₁l + m₂l²

• A(l) is approximated by a first grade polynomial $A(l) = a_0 + a_1 l$

n	l	Mod.	Exp.	Dev. (%)
2688	1	7.87	8.80	11.92
2688	2	8.40	9.67	15.23
2688	3	10.28	10.52	2.38
3200	1	13.02	14.51	11.92
3200	2	13.56	15.51	14.38
3200	3	16.00	16.30	1.87
5120	1	56.80	56.71	0.17
5120	2	56.44	57.01	1.00
5120	3	60.04	55.09	8.25
5632	1	75.78	74.92	1.12
5632	2	73.50	74.56	1.45
5632	3	71.70	70.97	1.03

Meeting on Parallel Routines Optimization and Applications UMU 12 Jun 2007

In Xeon and for n = 5120 the model make a wrong prediction, but the execution time is only 3.49 % higher.

Now, with remodelling, the deviation is smaller and ranged from 0.17 % to 15.23 %

Conclusions

■ The use of modelling techniques can contribute to reduce the execution time of the routines.

The modelling time must be small:

Preferable method FI-ME.

Reduce the number of samples in FI-LS.

Use small problem sizes for modelling.

The method has been applied successfully to the Strassen Matrix-Matrix multiplication and can be applied to other linear algebra routines.