
Meeting on Parallel Routines Optimization 
and Applications UMU 12 Jun 2007 1

Improving the model in a Improving the model in a 
hierarchy of libraries for hierarchy of libraries for 

selfself--optimizationoptimization
LuisLuis--Pedro Pedro GarcGarcííaa

ServicioServicio de de ApoyoApoyo a la a la InvestigaciInvestigacióónn TecnolTecnolóógicagica
Universidad Universidad PolitPolitéécnicacnica de de CartagenaCartagena, Spain , Spain 

luis.garcia@sait.upct.esluis.garcia@sait.upct.es



2
Meeting on Parallel Routines Optimization 

and Applications UMU 12 Jun 2007

OutlineOutline

IntroductionIntroduction
SelfSelf--OptimisedOptimised Linear Algebra Routine SamplesLinear Algebra Routine Samples
Experimental ResultsExperimental Results
ConclusionsConclusions



3
Meeting on Parallel Routines Optimization 

and Applications UMU 12 Jun 2007

IntroductionIntroduction

Our Goal: to obtain linear algebra parallel routines with autoOur Goal: to obtain linear algebra parallel routines with auto--
optimization capacityoptimization capacity
The approach: model the execution time of the routine to tune The approach: model the execution time of the routine to tune 
taking advantage of the natural hierarchy existing in linear taking advantage of the natural hierarchy existing in linear 
algebra programsalgebra programs
The basic idea is to start from lower level routines The basic idea is to start from lower level routines 
(multiplication, addition, etc.) to model the higher level ones (multiplication, addition, etc.) to model the higher level ones 
((StrassenStrassen multiplication, parallel multiplication, LU,  QR, multiplication, parallel multiplication, LU,  QR, 
CholeskyCholesky, etc)., etc).
In this talk: In this talk: 

A A remodellingremodelling stage  is proposed if the information at one level is not stage  is proposed if the information at one level is not 
accurate enough.accurate enough.
This new model will be built using polynomial regression.This new model will be built using polynomial regression.
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IntroductionIntroduction

TTheoreticalheoretical and experimental and experimental studystudy of the of the 
algorithm. APalgorithm. AP selectionselection..
In linear algebra parallel routinesIn linear algebra parallel routines,, typical AP and typical AP and 
SPSP areare: : 

b, p = r b, p = r xx cc and the basic libraryand the basic library
kk11,, kk22, , kk33, , ttss and and ttww

An analytical model of the execution timeAn analytical model of the execution time
T(n) = T(n) = f(n,AP,SPf(n,AP,SP) = n) = n33k3 (k3 (dgemmdgemm))
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RemodellingRemodelling de Linear Algebra Routine (LAR)de Linear Algebra Routine (LAR)
Designing a polynomial scheme from the original Designing a polynomial scheme from the original 
model for different combinations of n and AP:model for different combinations of n and AP:

T(n,APT(n,AP) = a) = a00n3/p + an3/p + a11n3*p + an3*p + a22n3 + an3 + a33n2/p +an2/p +a44n2*p n2*p 
+a+a55n2+ n2+ ……
The coefficients The coefficients aa0,0,aa1,1,aa2, 2, ... ... must be calculatedmust be calculated
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In order to determine these coefficients, four In order to determine these coefficients, four 
different methods are proposed:different methods are proposed:

FIFI--ME: ME: FIxedFIxed Minimal ExecutionsMinimal Executions
VAVA--ME: ME: VAriableVAriable Minimal ExecutionsMinimal Executions
FIFI--LS: LS: FIxedFIxed Least SquareLeast Square
VAVA--LS: LS: VAriableVAriable Least SquareLeast Square
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SelfSelf--OptimisedOptimised LARLAR

StrassenStrassen MatrixMatrix--Matrix multiplicationMatrix multiplication
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ttmultmult(n/2(n/2ll): Theoretical execution matrix ): Theoretical execution matrix 
multiplication. BLAS3 function DGEMMmultiplication. BLAS3 function DGEMM
ttaddadd(n/2(n/2ii): Theoretical execution matrix addition. ): Theoretical execution matrix addition. 
BLAS1 function DAXPYBLAS1 function DAXPY
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Experimental Experimental ResultsResults StrassenStrassen

Systems:Systems:
Xeon: Linux Intel Xeon 3.0 GHz workstationXeon: Linux Intel Xeon 3.0 GHz workstation
Alpha: Unix HPAlpha: Unix HP--Alpha 1.0 GHz workstationAlpha 1.0 GHz workstation

Models for DGEMM and DAXPYModels for DGEMM and DAXPY
Good Results with FIGood Results with FI--LS methodLS method

DGEMM: Third order polynomial (20 samples)DGEMM: Third order polynomial (20 samples)
n_minn_min = 500, = 500, n_maxn_max = 10000,  = 10000,  n_incn_inc = 500= 500

DAXPY: Sixth order polynomial (31 samples)DAXPY: Sixth order polynomial (31 samples)
n_minn_min = 64, = 64, n_maxn_max = 2000, = 2000, n_incn_inc = 64= 64
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Testing de Model in Xeon. Time in seconds.Testing de Model in Xeon. Time in seconds.

n             n             ll Mod.Mod. Exp.Exp. DevDev. (%). (%)
3072 3072 
3072 3072 
3072 3072 

11
22
33

11.7511.75
13.9013.90
37.0437.04

12.8612.86
13.6313.63
15.7615.76

8.588.58
1.991.99
135.06135.06

4096 4096 
4096 4096 
4096 4096 

11
22
33

27.2127.21
28.5928.59
48.7648.76

29.7129.71
30.1030.10
33.3433.34

8.418.41
5.025.02
46.2646.26

5120 5120 
5120 5120 
5120 5120 

11
22
33

53.1453.14
53.5353.53
71.0871.08

56.8356.83

56.4356.43
60.1960.19

6.516.51
5.135.13
18.0918.09

6144 6144 
6144 6144 
6144 6144 

11
22
33

96.4896.48

95.3995.39
110.40110.40

96.3296.32

93.6993.69
98.3998.39

0.170.17
1.821.82
12.2112.21
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Experimental Experimental ResultsResults StrassenStrassen

Testing de Model in Alpha. Time in seconds.Testing de Model in Alpha. Time in seconds.

n             n             ll Mod.Mod. Exp.Exp. DevDev. (%). (%)
3072 3072 
3072 3072 
3072 3072 

11
22
33

29.9629.96
28.5428.54

17.5517.55

29.7029.70
27.8227.82

27.6127.61

0.890.89
2.572.57
36.4636.46

4096 4096 
4096 4096 
4096 4096 

11
22
33

69.8569.85
66.0466.04

57.8257.82

70.8570.85
64.5564.55

62.5662.56

1.431.43
2.302.30
7.587.58

5120 5120 
5120 5120 
5120 5120 

11
22
33

135.03135.03
125.76125.76

118.12118.12

134.67134.67
123.38123.38

118.45118.45

0.260.26
1.921.92
0.280.28

6144 6144 
6144 6144 
6144 6144 

11
22
33

229.79229.79
211.10211.10

201.15201.15

232.27232.27
210.88210.88

199.33199.33

1.071.07
0.110.11
0.920.92
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Experimental Experimental ResultsResults StrassenStrassen

The optimal value of The optimal value of APAP, vary for different systems and , vary for different systems and 
problem sizes.problem sizes.
In Xeon and for In Xeon and for nn = 5120 the model make a wrong = 5120 the model make a wrong 
prediction, but the execution time is only 0.71 % prediction, but the execution time is only 0.71 % 
higher.higher.
However, in Xeon, the deviation ranged from 0.17 % However, in Xeon, the deviation ranged from 0.17 % 
to 135.06 %:to 135.06 %:

IT IS NECESSARY TO BUILD AN IT IS NECESSARY TO BUILD AN 
IMPROVED MODELIMPROVED MODEL
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RemodellingRemodelling StrassenStrassen

The scheme consists of defining a set of third grade The scheme consists of defining a set of third grade 
polynomial functions from the theoretical model:polynomial functions from the theoretical model:
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M(lM(l)) and and A(lA(l) ) must be calculated. For each must be calculated. For each ll, , nn varies  varies  
and the values of and the values of M(lM(l)) and and A(lA(l)) are obtained by least are obtained by least 
squares.squares.
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Now the set of values for Now the set of values for M(lM(l)) and and A(lA(l)) can be can be 
approximated by a polynomial inapproximated by a polynomial in ll and thus we have a and thus we have a 
single model for any combination of single model for any combination of nn and and l .l .
M(lM(l) ) is approximated by a second grade polynomialis approximated by a second grade polynomial

M(lM(l) =) = mm00 + m+ m11l + ml + m22ll22

A(lA(l) ) is approximated by a first grade polynomialis approximated by a first grade polynomial
A(lA(l) = a) = a00 + a+ a11ll
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RemodellingRemodelling StrassenStrassen
nn ll Mod.Mod. Exp.Exp. DevDev. (%). (%)

26882688
26882688
26882688

11
22
33

7.877.87
8.408.40

10.2810.28

8.808.80
9.679.67

10.5210.52

11.9211.92
15.2315.23
2.382.38

32003200
32003200
32003200

11
22
33

13.0213.02
13.5613.56
16.0016.00

14.5114.51
15.5115.51
16.3016.30

11.9211.92
14.3814.38
1.871.87

51205120
51205120
51205120

11
22
33

56.8056.80
56.4456.44
60.0460.04

56.7156.71
57.0157.01
55.0955.09

0.170.17
1.001.00
8.258.25

56325632
56325632
56325632

11
22
33

75.7875.78
73.5073.50
71.7071.70

74.9274.92
74.5674.56
70.9770.97

1.121.12
1.451.45
1.031.03
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RemodellingRemodelling StrassenStrassen

In Xeon and for In Xeon and for nn = 5120 the model make a = 5120 the model make a 
wrong prediction, but the execution time is only wrong prediction, but the execution time is only 
3.49 % higher.3.49 % higher.

Now, with Now, with remodellingremodelling, the deviation is smaller , the deviation is smaller 
and ranged from 0.17 % to 15.23 %and ranged from 0.17 % to 15.23 %
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ConclusionsConclusions
The use of The use of modellingmodelling techniques can contribute to techniques can contribute to 

reduce the execution time of the routines.reduce the execution time of the routines.

The The modellingmodelling time must be small:time must be small:

Preferable method FIPreferable method FI--ME.ME.

Reduce the number of samples in FIReduce the number of samples in FI--LS.LS.

Use small problem sizes for Use small problem sizes for modellingmodelling.  .  

The method has been applied successfully to the The method has been applied successfully to the 
StrassenStrassen MatrixMatrix--Matrix multiplication and can be applied Matrix multiplication and can be applied 
to other linear algebra routines.to other linear algebra routines.
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