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Abstract. Skeleton-based libraries are considered as one of the alterna-
tives for reducing the distance between end users and parallel architec-
tures. We propose a general development methodology that allows for
the automatic derivation of parallel programs assuming the existence of
general structures as the skeletons. We propose the introduction of a
new, high level abstraction layer that allows the user to extract problem
specifications from particular skeleton languages or libraries. The result
is a tool that allows for the generation of parallel codes from successive
transformations to this high level specification without any loss of effi-
ciency. We apply the technique to the automatic generation of parallel
programs for Dynamic Programming Problems.

1 Introduction

A widespread research methodology among scientists is based on developing a
mathematical formulation that conceptually provides a solution to a problem.
However, it is also common for the problem to remain partially unsolved if
the scientist is not able to transform this conceptual solution into a computer
program. Researchers usually bridge this gap by using software tools like mathe-
matical solvers, or even by writing their own code. This gap is even more evident
in the case of parallel computers, where much more effort is required by the user.

A substantial effort has been made in recent decades to reduce the distance
between parallel architectures and end users. As stated in [2], skeletal program-
ming has emerged as an alternative and has helped simplify programming, en-
hance portability and improve performance. Such systems conceal the parallelism
from the programmer and are characterized by being embedded entirely into a
functional programming language, or for integrating imperative code within a
skeletal framework in a language or library. Some of these approaches can be
seen in [4], [8], [3], [1], [6], [11], [5], [2]. The underlying idea of separating the
specification of a problem, or an algorithm, from implementation details that
are hidden to the user is present in all the proposals.

As also stated in [2], skeletal programming has yet to make a substantial
impact on mainstream methods in parallel applications programming. It is safe
to say that in many cases, the end user of many algorithmic skeletons, like those
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derived from algorithmic techniques (Divide and Conquer, Simulated Annealing,
etc.), is not a programmer but a scientist, say a biologist or a physicist, or a
mathematician. The potential use of this kind of tool is strongly conditioned
by its ease of use. Those who lack expertise in object or functional oriented
programming, or who have no programming knowledge at all, should be able to
apply them.

Based on XML specifications, we propose to introduce a new abstraction level
that contributes to a higher separation between the specification of a problem
and the implementation details. Skeletons act as an intermediate level between
the specification made by the user and the parallel implementation, so that the
user describes the problem through a general model and successive transfor-
mations convert the model into the instance code for a skeleton. The distance
between the scientific knowledge and the specification is bridged by the scien-
tist (not a programmer), while the distance between the specification and the
executable code is bridged by the machine. Since the code generated is based
on skeleton tools, the approach still maintains the advantages of the skeletal
development methodology while providing significant benefits for the scientist:

– No need for codification. The user specifies the problem and does not codify
the algorithm.

– Independence from specific programming languages or skeleton libraries.
Once the problem has been specified, it can be transformed into several
implementation proposals.

– Delivery of new applications due to the rapid development time.

– Improved application quality.
– Increased use of parallel architectures by non-expert users.

– Rapid inclusion of emerging technology into their systems. New transformers
can be delivered when needed.

This paper makes two primary contributions: a general development method-
ology for deriving parallel programs automatically, starting from a very high
level problem specification, and an application example in generating parallel
programs for Dynamic Programming (DP from now on) problems.

Although we focus on a specific scientific domain, the parallelization of DP
Problems, from a general point of view the technique presented here can be
considered as a particular instance of the MDA (Model Driven Architecture)
[9] general software engineering development methodology, and can be applied
to many other scientific domains. We will show how this methodology can be
applied, without any loss of efficiency, to parallel architectures. We also require
the project to adhere to general standards as much as possible; for that reason,
we follow the W3C [20] recommendations along every transformation step.

This paper is structured as follows: in Section 2 we introduce the software
architecture of the proposed methodology and show how the technique is applied
for the particular case of Dynamic Programming problems, and in Section 3 an
XML specification for Dynamic Programming is presented. The paper finalizes
with some concluding remarks and future lines of work.
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Fig. 1. Software Architecture for the Methodological Approach.

2 Software Architecture

We propose the introduction of a new abstraction layer between the user and
the skeletons so as to separate the fundamental logic behind a problem specifi-
cation from the specifics of the particular middleware that implements it (the
skeleton instance). The advantages of this approach were listed in Section 1. This
new layer should be closer to the scientific notation and should also be simple
enough to generate the appropriate code. In general, the use of XML as the
specification language is not mandatory; however, technologies based on XML
specifications have proven to be interesting standard alternatives for transforma-
tion into different formats. Although we use this specification to generate C++
code, it could be used to generate WSDL [19] and web services applications.

The software architecture of our transformation methodology is presented in
Figure 1. The layer between the end user and the skeletal libraries and languages
tries to span the significant gap for those scientists who are not directly involved
with programming. In order to provide access to data coming from an XML
document, an analysis of the document and its decomposition into nodes and
recognizable pieces through a standardized API is needed. The proper linking
of this analysis with the later processing can be achieved by following the DOM
(Document Object Model) [15] recommendation of the W3C. DOM is a set of
specifications for developing standards that allow programming languages to
interact with documents. DOM manipulates the whole document as a tree and
XML data are provided as nodes.

The elements needed to apply the methodology can be summarized as:

– A skeleton that can be architecture dependent.

– A specification language describing the domain of the application, indepen-
dent of the architecture.
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– A transformer of data documents expressed in that language as instances for
the skeleton.

The transformation from XML documents into parallel programs could be
done directly without using the skeleton layer; however, we consider the skeleton
layer necessary as a way of separating the parallel implementation, from the
specification of a solution to a problem using a sequential programming language.
The skeleton introduces several advantages, such as modularity, ease of use,
portability, etc... The sequential skeleton can be ported to any parallel machine
and the appropriate parallel code can be generated if necessary.

Fig. 2. Software Architecture for the Dynamic Programming Implementation.

Figure 2 shows how we have implemented this methodology for the partic-
ular case of Dynamic Programming problems. The automatic parallelization of
DP problems is achieved by making explicit transformations on the DPSPEC
data file (our specification language, described in Section 3) containing the XML
description of a Dynamic Programming equation. The XML description of the
formula is converted into a specific instantiation of the DPSKEL C++ skeleton
(actual release of the Dynamic Programming Mallba skeleton [10]) to solve the
problem in question. The C++ code generated for the Dynamic Programming
skeleton is the same as would be generated by an experienced C++ program-
mer, so no loss of efficiency is introduced during the process. This transforma-
tion step involves an analysis of the Dynamic Programming functional equation.
We have developed a DPSPEC to DPSKEL transformer. Our transformer per-
forms a DOM parsing of the XML functional equation to produce the proper
DPSKEL C++ required classes. We have not developed a general parser for
mathematical equations; instead, the DOM tree is parsed so that the nodes are
matched with expected values on Dynamic Programming recurrences (opera-
tors, variables, constants, etc,...). Once a value is found, the proper C++ code
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is generated for it. The parser has been developed using the Xerces-C++ library
[7]. Figure 3 shows a section of the parser that generates the C++ code of the
Evalua DPSKEL method for a <cond> DPSPEC element. Typically, a Dynamic
Programming equation is expressed as a piecewise equation, where a condition
must be tested before the function is evaluated. We use the label <cond> to
express such a condition. Note in Figure 3 the use of Xerces-C++ library func-
tions, such as getFirstChild() and getNextSibling(), to traverse the DOM
tree. We have developed the X2C Exp.Exp() method to evaluate expressions
recursively.

.... omitted code

// Generate header for the method Evalua of class State
Buffer.write("void State::Evalua(int stage, int index)\n");
Buffer.write("{\n");

Buffer.write("\tint v0, v1;\n");
Buffer.write("\tState st0(pbm, sol, table);\n\n");

// Parse a condition
// <cond>

// #Exp0
// #Exp1

// </cond>
// The former element is translated as

// if (#Exp0) {
// v0 = #Exp1;
// }

if (!strcmp(name, "cond")) {
do {

strcpy(name, (const char *)XMLString::transcode(p->getNodeName()));
if (!strcmp(name, "cond")) {

Buffer.write("\tif "); // Generate if code

X2C_Exp.Exp(p->getFirstChild());
Buffer.write(" {\n");

Buffer.write("\t\tv0 = ");
X2C_Exp.Exp(p->getFirstChild()->getNextSibling());

Buffer.write(";\n\t}\n");
} else

break;

p = p->getNextSibling();
} while(p != 0);

} else
X2C_Exp.Exp(p);

// Generate the assignment of the evaluated state and the subsequent insertion in table

Buffer.write("\tst0.setvalue(v0);\n");
Buffer.write("\ttable.PUT_STATE(st0, stage, index);\n");

Buffer.write("}\n\n");
// Write the generated code to the required DPSKEL C++ data file

if ((fevalua = fopen("dp.req.cc","w")) == NULL)
return (-1);

fprintf(fevalua, "%s", Buffer.buf());

fclose(fevalua);
return (0);

Fig. 3. DOM parser for an DPSPEC XML data file (element <problem>).

The Evalua (void State::Evalua(int stage, int index)) method, required for users
of DPSKEL, includes a C++ specification of the recurrence equation. The code
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in Figure 4 shows the method for the optimal matrix parenthesization (Table 1
and Equation 1). Note that the DOM parser shown in Figure 3 generates C++
code since we are interested in the specific DPSKEL C++ implementation. A
different parser can be developed that generates code for any other programming
language if needed.

void State::Evalua(int stage, int index)

{

int v0, v1;

State st0(pbm, sol, table);

if (stage == index) {

v0 = 0;

}

if (stage != index) {

v0 = INT_MAX;

for( int k = stage; k <= (index - 1); k++) {

v1 = (table.GET_STATE(stage, k).get_value() +

table.GET_STATE((k + 1), index).get_value() +

(r[(stage - 1)] * r[k] * r[index]));

if (v1 < v0)

v0 = v1;

};

}

st0.setvalue(v0);

table.PUT_STATE(st0, stage, index);

}

Fig. 4. Evalua method generated for the Optimal Matrix Parenthesization (see Table
1 and Equation 1).

However, scientists typically represent the functional equations as mathe-
matical expressions, like those shown in Table 1, by using their favorite equation
editor (Latex, OpenOffice, etc.). Therefore, a new transformation is implicitly
involved in the process: the conversion of the mathematical equation to the XML
specification. Currently, the transformation between a mathematical formula and
an XML specification is provided automatically for many popular MathML (the
W3C recommendation for describing mathematics as a basis for machine to ma-
chine communication) [17], [16], software editors, for example, EdiTex, OpenOf-
fice, Scientific Word, sMArTH, etc. (see [18] for a detailed MathML software
list). All of them generate a MathML document for a given equation. DPSPEC
is compatible with MathML and the conversion between a MathML document
into a DPSPEC document can be achieved through a preprocessing step.
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Problem Recurrence DP Category

0/1 Knapsack fkc = max{fk−1c, fk−1c−wk
+ pk} Serial Monadic

Longest Common fij = fi−1j−1 + 1 if xi = yj ; or

Subsequence fij = max{fij−1, fi−1j} if xi 6= yj Nonserial Monadic

Floyd’s All-Pairs

Shortest-Paths dk
ij = min{dk−1

ij , dk−1

ik + dk−1

kj } Serial Polyadic

Optimal Matrix
Parenthesization cij = min{cik + ck+1j + ri−1rkrj} Nonserial Polyadic

Table 1. Examples of Dynamic Programming recurrences

3 DPSPEC: an XML specification for Dynamic

Programming Problems

In this section we show the XML specification that we have developed for DP
problems. Several XML specifications have been proposed to describe the seman-
tics of mathematical expressions: MathML [17], OpenMath [13], OMDoc [12],
XDF [14]. Any of them could be used to specify the DP functional equation; how-
ever, we decided to develop our own specification adapted to DP problems. The
reason behind our decision was two-fold: to reduce the elements to a minimum,
and to introduce some changes in the structure for specific elements appearing in
classical specifications. These design issues make the subsequent parsing easier
and allow for a better semantic analysis to detect data dependencies, all while
adhering as closely as possible to the user defined equation. The semantic anal-
ysis determines the traversing mode of the DP table. DPSPEC brings together
the elements to describe piecewise defined functions, simple variables and vec-
tors, arithmetic, logical, relational and max-min operators, and iterators. Table
2 summarizes the elements available in the DPSPEC language. The proper syn-
taxis and semantics of DPSPEC have been defined as an XSD schema (omitted
in the paper due to space constraints).

Element Operation

Main element <problem>

Logical functions <and>, <or>, <not>

Conditional <cond>

Relational operators <lt>, <le>, <gt>, <ge>, <eq>, <ne>

Binary mathematical operators <minus>, <divide>, <power>

N-ary mathematical operators <plus>, <times>, <max>, <min>

N-ary iterative operators <imax>, <imin>

States <state>

Variables <ci>

Constants <cn>

User defined functions <functiondef>, <function>

User defined vectors <vectordef>, <vector>

Table 2. Current elements available in DPSPEC
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DPSPEC has been used to specify DP problems appearing in Table 1. As
an example to illustrate the use of DPSPEC, we will consider the functional
equation for the multiplication parenthesization problem (Equation 1). This is
a paradigmatic problem and its recurrence equation represents a wide range of
Dynamic Programming applications. Note that the equation appears represented
as a piecewise function. The variables i and j will be mapped as the variables
stage and index of the method Evalua of the class State in DPSKEL. Figure 6
shows the XML specification using DPSPEC for Equation 1. The <cond> ele-
ment allows us to describe each one of the conditions of the equation. Thanks
to the availability of assistant XML editors, non-expert programmers can gen-
erate DPSPEC XML specifications more readily than sequential C programs
can. Moreover, as stated in Section 2, the DPSPEC code can also be directly
generated from equation editors.

c(i, j) =

{

0 if j = i, 0 < i ≤ n
mini≤k<j{c(i, k) + c(k + 1, j) + ri−1 · rk · rj} if 1 ≤ i < j ≤ n

(1)

Fig. 5. Speedups obtained for Knapsack Problem (KP), Longest Common Subsequence
(LCS), Floyd All-Pairs Shortest-Paths algorithm (FSP) and Optimal Matrix Parenthe-
sization Problem (MPP).
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The generation of the parallel code is quite straightforward: a DPSPEC doc-
ument is transformed into a DPSKEL C++ instance code just by running the
parser, and the DPSKEL code is compiled using the proper parallel library. Since
the time invested by the parser to generate the DPSKEL code is negligible, the
time invested in generating a parallel code from the XML specification is com-
parable to the time invested in compiling any other parallel program. No extra
overhead is introduced.

In terms of the efficiency of the generated code, Figure 5 shows the perfor-
mance obtained with the DPSKEL-generated parallel code. Series of instances
for the problems in Table 1 were randomly generated for each problem. The
instances of the skeleton generated use the OpenMP library [10] on an RS-6000
SP IBM platform. The tool’s performance was satisfactory in all the cases. We
observed increasing speedups in all the cases when the number of processors
was increased. Superlinear speedup was observed in some cases, likely due to
improved cache use on the parallel versions.

4 Conclusions and future work

In summary, we proposed a general methodology that allows for the automatic
generation of parallel programs. The methodology is based on the existence of
general parallel programs, like skeletons, that can be generated from higher level
specification languages such as, for example, XML-based specifications. The code
generated is efficient since no overhead is introduced during the transformation
steps. The technique was validated by applying it to the generation of parallel
Dynamic Programming algorithms. Once an XML specification has been stated,
transformations from/to many other languages can be developed at a reasonable
cost. We are also interested in the development of new transformation tools from
other languages to DPSPEC, as is the case with OpenMath, for example, and
from DPSPEC to other languages such as WSDL to provide the interface for a
web service application.
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<?xml version = ’1.0’ encoding = ’utf-8’?>

<problem>
....

<!-- Declare a vector -->

<vectordef load="xmlfile" type="int" name="r" vars="1" />
<!-- c(stage, index) = {

0 if (stage = index),

min{c(stage, k) + c(k + 1, index) + r(stage-1) * r(k) * r(index)}
if (stage <> index)

} -->

<cond> <!-- 0 if (stage = index) -->

<eq>
<ci>stage</ci>

<ci>index</ci>
</eq>

<cn>0</cn>
</cond>

<!-- Evalua c(stage, index) -->
<cond> <!-- min{c(stage, k) + c(k + 1, index) + r(stage-1) * r(k) * r(index)} if (stage <> index)} -->

<ne> <-- if (stage <> index)} -->
<ci>stage</ci>

<ci>index</ci>
</ne>

<imin> <-- iterative min from k = stage to index - 1 -->
<var>k</var>

<startinterval>
<ci>stage</ci>

</startinterval>

<endinterval>
<minus>

<ci>index</ci>
<cn>1</cn>

</minus>

</endinterval>
<plus> <-- c(stage, k) + c(k + 1, index) + ... -->

<state>
<ci>stage</ci>

<ci>k</ci>
</state>
<state>

<plus>
<ci>k</ci>

<cn>1</cn>
</plus>
<ci>index</ci>

</state>
<times> <-- ... + r(stage - 1) * r(k) * r(index) -->

<vector name="r" >
<minus>

<ci>stage</ci>
<cn>1</cn>

</minus>

</vector>
<vector name="r" >

<ci>k</ci>
</vector>

<vector name="r" >
<ci>index</ci>

</vector>

</times>
</plus>

</imin>
</cond>

</problem>

Fig. 6. XML description of the Multiplication Parenthesization problem using DP-
SPEC
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