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Abstract

This paper surveys several topics related to a nonlinear centered
piecewise polynomial interpolation technique and the associated mul-
tiresolution schemes. This interpolation leads to a nonlinear recon-
struction operator with several desirable features: the reconstruction
is fourth-order accurate in smooth regions, the data used is always
centered with optimal support, the Gibbs phenomenon of linear recon-
structions, in the presence of discontinuities, does not appear. Special
attention is paid to the stability of the associated multiresolution trans-
form. Finally, some applications are analyzed.
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1 Introduction

Recently, various attempts to improve the classical linear multiresolutions
of wavelet type have led to nonlinear multiresolutions. In such frameworks,
few results for convergence and stability are available [16], [21], [17], [23],
[38], [40].

In [9], in the context of image compression, a new multiresolution has
been presented. Using a tensorial product, this multiresolution is based
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on an one dimensional nonlinear multiresolution called PPH (for Piecewise
Polynomial Harmonic) multiresolution. It has been analyzed in terms of
convergence and stability of its associated subdivision scheme following an
approach for data dependent multiresolutions introduced in [21]. Edge reso-
lution, robustness with regard to texture or noise, accuracy and compression
capabilities have been numerically investigated. All the results seem to indi-
cate that, opposite to other nonlinear techniques, the PPH multiresolution is
stable and can be applied without specific control of error as such introduced
in [2].

In [11], we established the stability of the PPH multiresolution that, due
to nonlinearity is not a consequence of the stability of the associated subdivi-
sion scheme. The key point for that, was to present the PPH multiresolution
as some perturbation of a classical linear multiresolution following [28], [40]
and [23].

These type of nonlinear reconstructions have several applications as:
shock-capturing methods for conservation laws [3], [4], [25], [37], signal pro-
cessing [1], [5], [14], [12] image and video compression [9], [6], [7], [13], [18]
image denoising [8], [39], subdivision schemes [9], [20], [29], [30], [31].

This review paper is organized as follows: In section 2 we present the
PPH multiresolution as some perturbation of a linear interpolatory mul-
tiresolution. In section 3 we establish a two step contraction property, we
deduce a convergence result and prove the stability of the multiresolution.
Finally, in section 4 we present and analyze some applications of the PPH
reconstruction.

2 The Interpolatory Multiresolution Setting

Let us consider a set of nested grids in R:

Xk = {xk
j }j∈Z, xk

j = jhk, hk = 2−k,

and the point-value discretization

Dk :

{
CB(R) → V k

f 7→ fk = (fk
j )j∈Z = (f(xk

j ))j∈Z,
(1)

where V k is the space of real sequences related to the resolution of Xk

and CB(R) the set of bounded continuous functions on R. A reconstruction
operatorRk associated to this discretization is any right inverse of Dk, which
means that for all fk ∈ V k, Rkf

k ∈ CB(R) and

(Rkf
k)(xk

j ) = fk
j = f(xk

j ). (2)
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The sequences {Dk} and {Rk} define a multiresolution transform. The
prediction operator, ie, Dk+1Rk : V k → V k+1, defines a subdivision scheme.
Relation (2) implies that the subdivision scheme is interpolatory (see [15]
for details). If Rk is a nonlinear reconstruction operator, the corresponding
subdivision scheme is also nonlinear.

2.1 Linear reconstruction techniques: Data independent La-
grange interpolation

The standard data independent Lagrange interpolatory techniques are used
to define linear reconstruction operators (RLk fk)(x) that are piecewise poly-
nomial functions defined in each subinterval [xk

j , x
k
j+1] as the unique inter-

polation polynomial for the data set {fk
j+m, m ∈ S} with S = S(r, s) =

{−s,−s + 1, . . . ,−s + r}.
Lagrange interpolatory techniques lose their accuracy in the presence of

isolated singularities. More details can be found in [15].

2.2 Nonlinear reconstruction techniques: PPH interpolation

In this section, we introduce briefly a fourth order non linear and data de-
pendent interpolation scheme based on a piecewise polynomial interpolation
operator introduced in [3] and called PPH interpolation. The details can be
found in [9].

This nonlinear interpolatory technique leads to a reconstruction operator
with several desirable features. First, each polynomial piece is constructed
with a fixed centered stencil of 4 points {xk

j−1, x
k
j , x

k
j+1, x

k
j+2}. Second, the

reconstruction is as accurate as its linear equivalent on smooth regions.
Third, the accuracy is reduced close to singularities, but it is not completely
lost as in its linear counterpart.

Considering the divided differences associated to the interpolatory sten-
cil,

ek
j− 1

2
= f [xk

j−1, x
k
j ], ek

j+ 1
2

= f [xk
j , x

k
j+1], ek

j+ 3
2

= f [xk
j+1, x

k
j+2],

Dk
j = f [xk

j−1, x
k
j , x

k
j+1], Dk

j+1 = f [xk
j , x

k
j+1, x

k
j+2],

the PPH interpolation from the centered data fk
j−1, f

k
j , fk

j+1, f
k
j+2 has the

following form

P̃j(xk
j+ 1

2
) =

fk
j + fk

j+1

2
− 1

4
D̃kh2. (3)
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where

D̃k =

{
2Dk

j Dk
j+1

Dk
j +Dk

j+1
if Dk

j Dk
j+1 > 0,

0 otherwise.
(4)

It is interesting to compare this expression with the equivalent one ob-
tained from the centered Lagrange interpolatory polynomial Pj(x)

Pj(xk
j+ 1

2
) =

fk
j + fk

j+1

2
− 1

4
Dk

j + Dk
j+1

2
h2. (5)

Due to the fact that

|2 Dk
j Dk

j+1

Dk
j + Dk

j+1

| ≤ 2min(|Dk
j |, |Dk

j+1|) = O(1), (6)

we obtain D̃k = O(1), instead of O( 1
h), as in the linear case when a discon-

tinuity exists in [xk
j−1, x

k
j ] or in [xk

j+1, x
k
j+2].

We notice that the net effect is the replacement of the arithmetic mean
of Dk

j and Dk
j+1 by the ‘modified’ harmonic mean D̃k in (4). The arith-

metic mean and the harmonic mean of two values are very close for values
of the same magnitude, but the harmonic mean is always bounded in abso-
lute value by twice the absolute value of the smallest of the two numbers.
This property is the key to the behavior of the PPH reconstruction close to
isolated singularities.

Other two reformulations of the proposed modification, derived from
elementary algebra, that are useful for the theoretical analysis, can be found
in [9].

We establish next some properties of the PPH reconstruction operator:

1) By construction, the data used for the interpolation remain centered.

2) The reformulations show that our scheme involves a nonlinear modifi-
cation of the values fk

j−1 or fk
j+2, ie, the values at the boundary of the

4-point stencil.

3) If f is a polynomial of degree less or equal to 2,

Dk
j = Dk

j+1 =
Dk

j + Dk
j+1

2
= D̃k,

therefore the proposed scheme reproduces polynomials of degree 2.
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4) If f ∈ C4 and Dk
j Dk

j+1 > 0, using a Taylor expansion we get

2
Dk

j Dk
j+1

Dk
j + Dk

j+1

=
f
′′
(xk

j+ 1
2

)

2
+ O(h2),

Dk
j + Dk

j+1

2
=

f
′′
(xk

j+ 1
2

)

2
+ O(h2).

Therefore, in smooth regions, the difference between the arithmetic
mean and the harmonic mean is O(h2), hence the proposed recon-
struction remains fourth order accurate in smooth regions.

5) When Dk
j Dk

j+1 ≤ 0, P̃ (xk
j+1/2) =

fk
j+1+fk

j

2 . In this case, the accuracy of
the reconstruction is limited to second order even in smooth regions.

6) If there is a discontinuity in [xk
j+1, x

k
j+2] and Dk

j Dk
j+1 > 0, due to (6)

the Gibbs phenomenon of linear reconstruction does not appear. In
addition, the order of accuracy of the reconstruction remains O(h2) in
this case.

For more details see [9], [44].

3 Stability of the PPH multiresolution

Introducing the differences Dkfj = fk
j+1 − 2fk

j + fk
j−1, according to section

2, the PPH reconstruction, P̃j when |Dkfj | ≤ |Dkfj+1|, is the polynomial
of degree 3 defined by

{
P̃j(xk

l ) = fk
l , for j − 1 ≤ l ≤ j + 1,

P̃j(xk
j+2) = f̃k

j+2,
(7)

with
f̃k

j+2 = fk
j+1 + fk

j − fk
j−1 + 2H(Dkfj , D

kfj+1),

where H is defined by:

(x, y) ∈ IR2 7→ H(x, y) :=
xy

x + y
(sgn(xy) + 1), (8)

where sgn(x) = 1 if x ≥ 0 and sgn(x) = −1 if x < 0.
Before establishing the stability, we need the following technical lemmas

that deal with the function H defined above. We refer [11] for the details.
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Lemma 1 For any couples (x, y), (x′, y′) ∈ IR2, the function H satisfies the
following properties:

1) H(x, y) = H(y, x)

2) H(x, y) = 0 if xy ≤ 0

3) H(−x,−y) = −H(x, y)

4) |H(x, y)| ≤ max(|x|, |y|)
5) |H(x, y)| ≤ 2min(|x|, |y|)
6) |H(x, y)−H(x′, y′)| ≤ 2max{|x− x′|, |y − y′|}.

Lemma 2 The function Z defined on IR3 by Z(x, y, z) = x
2 − 1

8(H(x, y) +
H(x, z)) satisfies the following properties:

1) |Z(x, y, z)| ≤ |x|
2

2) sign(Z(x, y, z)) = sign(x).

3) |Z(x, y, z)− Z(x
′
, y

′
, z
′
)| ≤ 1

2 |x− x
′ |+ 1

2 max{|y − y
′ |, |z − z

′ |}

We then focus on the subdivision scheme SPPH associated to the PPH
prediction that writes

fk−1 7→ SPPH(fk−1) = DkRk−1f
k−1,

with {
(DkRk−1f

k−1)2j+1 = P̃j(xk
j+ 1

2

),

(DkRk−1f
k−1)2j = fk−1

j .
(9)

We have the following two step contraction property:

Proposition 1 If, removing k for simplicity, f̂ = SPPH(f), ĝ = SPPH(g),
f̄ = SPPH(f̂) and ḡ = SPPH(ĝ) then

1) ||Df̂ ||l∞(Z) ≤ 1
2 ||Df ||l∞(Z),

2) |D(f̂j − ĝj)| ≤ 1
2 ||D(f − g)||l∞(Z), for j = 2n + 1,

|D(f̂j − ĝj)| ≤ ||D(f − g)||l∞(Z), for j = 2n,

and
3) ||D(f̄ − ḡ)||l∞(Z) ≤ 3

4 ||D(f − g)||l∞(Z).

(10)
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Remark 3.1 The following example, (Dkfn, Dkfn+1, D
kfn−1) = (M+1, 0, 0)

and (Dkgn, Dkgn+1, D
kgn−1) = (M, 1, 1) with M → +∞ shows that a sin-

gle step contraction property in the sense of property 2) (j = 2n + 1) of
proposition 1 is not available for j = 2n.

We are now able to derive directly the convergence of the subdivision
scheme1 SPPH , applying theorem 3.3 of [23]. In our context, this theorem
applies as follows: If SL is a converging linear subdivision scheme with
Hölder smoothness sL, reproducing polynomials up to degree P , if SN is a
perturbation of SL in the sense that, calling fk := SN (f0) for all f0 ∈ l∞,

||SN (fk)− SL(fk)||l∞(Z) = O(2−νk),

then SN is convergent with an Hölder smoothness sN ≥ min(P, sL, ν) − δ
for all δ > 0.

Indeed, if we choose SL, the linear interpolatory subdivision scheme
for SL (see (3)), we have sL = 1 and from property 3) of lemma 1 and
Proposition 1, ν = 1. With P = 1 we obtain the convergence of SPPH with
Hölder regularity 1− δ.

Remark 3.2 It is shown in [36] that the limit curves obtained under SPPH

are at most Lipschitz continuous (s = 1) as it can be observed considering
the Dirac delta sequence f0 = (..., 0, 0, 1, 0, 0, ...). Indeed, its limit curve is
a piecewise linear hat function.

Remark 3.3 Using other tracks, a general approach in [21] and [9] or con-
vexity preservation in [36] and [32], the convergence for the subdivision
scheme SPPH has been established. However, this property is not sufficient to
ensure the stability of the associated multiresolution. The ENO-interpolatory
subdivision scheme [21], constructed, as the PPH, in the Harten’s framework
and involving data dependent linear interpolation, is an example of converg-
ing but unstable non linear subdivision scheme.

We now consider the PPH multiresolution.
We first give the following result involving the details d(f), d(g) and

d(ḟ), d(ġ):
1A subdivision scheme S is called convergent with Hölder smoothness s if, for all

sequence f0 ∈ l∞(Z), the sequence of piecewise linear functions φk interpolating the
points fk

j at xk
j converges to a function φ of Hölder regularity s.
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Proposition 2 If, removing k for simplicity, ḟ = SPPH(f) + d(f), ġ =
SPPH(g) + d(g), f̈ = SPPH(ḟ) + d(ḟ) and g̈ = SPPH(ġ) + d(ġ) then

1) ||Dḟ ||l∞(Z) ≤ 1
2 ||Df ||l∞(Z) + ||Dd(f)||l∞(Z),

2) |D(ḟj − ġj)| ≤ 1
2 ||D(f − g)||l∞(Z) + ||Dd(f)−Dd(g)||l∞(Z), for j = 2n + 1,

|D(ḟj − ġj)| ≤ ||D(f − g)||l∞(Z) + ||Dd(f)−Dd(g)||l∞(Z), for j = 2n,

and
3) ||D(f̈ − g̈)||l∞(Z) ≤ 3

4 ||D(f − g)||l∞(Z)

+||Dd(f)−Dd(g)||l∞(Z) + ||Dd(ḟ)−Dd(ġ)||l∞(Z).
(11)

We are then able to establish the following theorem related to the sta-
bility of the PPH multiresolution {f0, d0, . . . , dL−1} 7→ fL:

Theorem 1 For any pair of elements fL, f̃L ∈ l∞(Z) and their PPH de-
compositions {f0, d0, . . . , dL−1} and {f̃0, d̃0, . . . , d̃L−1}, we have:

||fL − f̃L||l∞(Z) ≤ 9

(
||f0 − f̃0||l∞(Z) +

L−1∑

k=0

||dk − d̃k||l∞(Z)

)
. (12)

Finally, we have a last theorem related to the stability of the PPH de-
composition fL 7→ {f0, d0, . . . , dL−1}:

Theorem 2 Given {f0, d0, . . . , dL−1} and {f̃0, d̃0, . . . , d̃L−1} two PPH de-
compositions, corresponding to fL, f̃L ∈ l∞(Z), then

||f0 − f̃0||l∞(Z) ≤ ||fL − f̃L||l∞(Z),

||dk − d̃k||l∞(Z) ≤ 3 ||fL − f̃L||l∞(Z), ∀0 ≤ k ≤ L− 1.

The proofs of all these results can be found in [11].

4 Applications

In this section we review several applications of the PPH reconstruction.
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4.1 Shock capturing methods for hyperbolic conservation
laws

We consider numerical approximations to weak solutions of nonlinear hy-
perbolic conservation laws:

ut + f(u)x = 0, (13)

u(x, 0) = u0(x). (14)

where the initial data u0(x) are supposed to be piecewise smooth functions
either periodic or of compact support.

Let be un
j = uh(xj , tn) denote a numerical approximation to the exact

solution u(xj , tn) of (13)-(14) defined on a computational grid xj = jh,
tn = n∆t in conservation form:

un+1
j = un

j − λ(f̂n
j+ 1

2
− f̂n

j− 1
2
), (15)

where λ = ∆t
h and the numerical flux is a function of 2k variables

f̂n
j+ 1

2
= f̂(un

j−k+1, . . . , u
n
j+k), (16)

which is consistent with (13), i.e.

f̂(u, . . . , u) = f(u). (17)

The importance of the following lemma is because it implies that ap-
proximating the numerical flux f̂j+ 1

2
to a high order accuracy it is enough

to reconstruct g(xj+ 1
2
) (see equation (18)) up to the same order.

Lemma 3 (Shu and Osher) If a function g(x) satisfies

f(u(x)) =
1
h

∫ x+h
2

x−h
2

g(ξ)dξ (18)

then

f(u(x))x =
g(x + h

2 )− g(x− h
2 )

h
.

We define a computational grid xj = jh, j integer, h > 0, where the cells
are

Cj = {x : xj− 1
2
≤ x ≤ xj+ 1

2
}, (19)
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and xj+ 1
2

= xj + 1
2h.

Our grid data are:

vj =
1
h

∫ x
j+1

2

x
j− 1

2

g(ξ)dξ, (20)

dj+ 1
2

=
vj+1 − vj

h
, (21)

(dj+ 1
2

= g
′
(xj+ 1

2
) + O(h2)).

We required the following conditions for every j:

vj =
1
h

∫ x
j+1

2

x
j− 1

2

rj(ξ)dξ, (22)

di+ 1
2

= r
′
j(xi+ 1

2
), i = j − 1, j. (23)

Taylor series expansions show that conditions (22) and (23) imply third
order accuracy of the reconstruction rj(x).

The reconstruction procedure is repeated at every time step, thus the
change in total variation of the reconstruction must be controlled.

The algorithm defines the modified reconstruction r̃j(x) such that its
derivative interpolates dj at xj and the lateral grid derivative with smallest
absolute value. Where, if Cj is a nontransition (dj− 1

2
· dj+ 1

2
> 0) cell,

then we define dj such that |dj − r
′
(xj)| = O(h2) in smooth regions and

max(r̃
′
j(xj− 1

2
), r̃

′
j(xj+ 1

2
)) = O(1). In transition cells we consider d0 = 0.

Using PPH reconstructions and the discussions of the previous sections
we can find the reconstructions rj [3], [4].

To complete the schemes, Shu and Osher developed a special family of
Runge-Kutta time integration schemes that have a TVD property [42], [43].
The TVD property prevents the time stepping scheme from introducing
spurious spatial oscillations into upwind-biased spatial discretization.

For more details and numerical examples we refer [3], [4]. For instance,
the PPH reconstruction presented in [3] is, for non-transition cells dj− 1

2
·

dj+ 1
2

> 0, a polynomial of degree two corresponding to the grid data vj ,

dj :=
2d

j− 1
2
·d

j+1
2

d
j− 1

2
+d

j+1
2

and dθ := sgn(dj− 1
2
)min{|dj− 1

2
|, |dj+ 1

2
|}. Indeed

pj(x) = a0 + a1x + a2x
2, (24)

where:
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a2 =
1
2

dθ − dj

x(θ)− xj
,

a1 = dθ − x(θ)
dθ − dj

x(θ)− xj
,

a0 = vj − h2

12
a2,

θ =

{
j − 1

2 , |dj− 1
2
| ≤ |dj+ 1

2
|,

j + 1
2 , |dj− 1

2
| > |dj+ 1

2
|.

For transition cells (dj− 1
2
· dj+ 1

2
≤ 0), the only change is d1 := 0.

In figures 1-4, for the Euler equations of gas dynamics [37], we study the
initial condition:

u(x, 0) =





(4.4, 2.3, 5) −0.5 < x ≤ −0.3
(p(x), p(x), p(x)) −0.3 < x < 0
(0.5, 0, 2.5) 0 ≤ x < 0.5

where p(x) = sin(40 · π · x).
We denote by h = (b− a)/n the spatial discretization parameter and by

m the number of time steps.
The fine structure in the density profile makes necessarily the use of

high order methods. This problem is difficult for chock capturing methods
because both high order accuracy and an oscillation free shock are needed.
The CFL number, that is to say the relation between the parameters h and
∆t, defines the stability of the numerical scheme. All explicit methods are
sensitive to this number. Nevertheless, in order to compare the sensitive of
the different methods, we consider different parameters sizes. ENO schemes
[35] seems the most sensitive, since produce artificial oscillations. Neverthe-
less, both PHM [37] and PPHM converges to the entropy solution without
fictitious oscillations (even in the worst case, see figure 4).

More results can be found in [3]. These numerical results seem to in-
dicate that the PPH method has two main advantages with respect to the
same order ENO schemes: it is not very sensitive neither to the CFL num-
ber nor to the discretization parameter and it is more local than ENO-3 in
the sense that numerical flux depend on less variables (four and six respec-
tively). Moreover, in the presence of discontinuities it is stable and with
lower viscosity. The main advantage respect to the PHM scheme [37] is the
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Figure 1: n=180, m=80, CFL=0.4, o=PPHM, left +=PHM, right +=ENO-
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Figure 2: n=360, m=320, CFL=0.4, left ENO-3, right PHM

simplicity of our reconstruction, thus, it is less expensive. The CPU time
used by the reconstruction in the PPH method is more or less 35% minor
than the used in the others cases.
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Figure 3: left n=360, m=320, CFL=0.4, PPHM right n=180, m=225,
CFL=0.4, ENO-3
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Figure 4: n=180, m=225, CFL=0.4, left PHM, right PPHM

4.2 Compression of locally oscillatory signals with disconti-
nuities

Neither local techniques (based on multiscale decompositions) nor global
ones (based on Fourier Analysis) have good compression properties for lo-
cally oscillatory signals with discontinuities. In this section we present
a combined approach. We consider the PPH reconstruction (stable and
adapted to the presence of discontinuities, as we have analyzed in the pre-
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vious section) together with a discrete Fourier transform for the oscillatory
parts of the considered signal. A similar idea has been used in [26], but
using ENO (essential non oscillatory) interpolation as nonlinear interpola-
tion technique. The problem of this type of nonlinear interpolation is the
stability (ENO schemes are not stable [21]).

Following [26], we can define the so called combined approach as:
1) Determine and label the limits of each oscillatory interval Im.
2) Compute the multiresolution of fL.
3) Compress this representation. Let ε be the truncation parameter,

used as

d̃k
j = tr(dk

j , ε) =





0 |dk
j | ≤ ε

0 xk
j ∈ Im

dk
j otherwise

where dk
j represents the different detail coefficients, assuming that the same

value of ε for all the levels of multiresolution is used.
4) Compute the error between the reconstruction at the coarsest resolu-

tion level 0 and the original signal.

Ej = fL
j −R0(xL

j ).

5) Compute locally the DFT (Discrete Fourier Transform) of the finite
sequence {Ej} for the j such that xL

j ∈ Im.
6) Compress the coefficients Am

j and Bm
j of the DFT representation,

C̃m
j = tr(Cm

j , εF ) =
{

0 |Cm
j | ≤ εF

Cm
j otherwise

At the end we have the following representation of fL:

{f0, (d̃1, d̃2, . . . , d̃L), Ãm
j , B̃m

j }.
We consider a locally oscillatory signal with a discontinuity:

f(x) =





sin(0.2x) x ∈ [−2π, 0) ∩ [2π, 4π)

sin(0.2x) + 0.2sin(10x) x ∈ [0, 2π)

sin(0.2x) + 1 otherwise

(25)

We consider LIN4-The 4-point linear Delauries and Dubuc interpola-
tory wavelet transform, DFT-Discrete Fourier Transform, PPH-The 4 point
nonlinear PPH multiresolution transform and the combined approach PPH-
DFT.
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In table 1 we observe the good properties of the combined approach.
The highest compression is achieved by the PPH-DTF reconstruction. Fig-
ures 5-6 display the results, the jump discontinuity produces Gibbs-like phe-
nomenon when using linear interpolation. The smallest error is produced
by the PPH reconstruction but with 20 coefficients (corresponding to the
oscillatory part) more than the combined approach.

ε = 0.001, L = 4 LIN4 DFT PPH PPH-DFT
nnz 94 185 88 68
rc 3.67 e− 01 7.23 e− 01 3.44 e− 01 2.66 e− 01
l1 14.39 e + 00 1.55 e + 00 2.82 e− 02 2.52 e− 01
l∞ 9.02 e− 01 4.40 e− 02 6.34 e− 04 1.55 e− 02
l22 2.15 e + 00 1.56 e− 01 3.10 e− 03 4.09 e− 02

Table 1: Number of non zero coefficients, compression ratio, l∞, l1 and l22
prediction errors, function f4, (JL + 1) = 257 points, εF = 0.003.
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Figure 5: left DFT, right LIN4, original, reconstructed and error

For more details and numerical examples we refer [5].

4.3 Applications to image processing

In this section, we review the application of the PPH multiresolution scheme
to compression and denoising of images.
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Figure 6: left PPH, right PPH-DFT, original, reconstructed and error

To analyze the compression properties of a two dimensional multireso-
lution algorithm M

Ak ↔
(

Ak−1 ∆k
2

∆k
3 ∆k

1

)
(26)

we introduce ε, a truncation parameter, and the truncation operator (hard-
threshold) trε defined as

trε(A0, ∆) = (A0, ∆̂),

with

(∆̂k
l )ij =

{
0 |(∆k

l )ij | ≤ ε,
(∆k

l )ij otherwise.

The same value of ε is used for all multiresolution levels k. A different type
of thresholding, more adapted to denoising applications, is the soft-threshold
method [27]

∆̂k
i = ηε

(
∆k

i

)
= sgn

(
∆k

i

)
∗max

(
abs(∆k

i )− ε, 0
)

.

After truncation, the inverse multiresolution transform M−1 is applied
to obtain

ÂL = M−1trε(MAL),
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which is then compared to the original image using the following norms

||AL − ÂL||lp =

(
1

(JL + 1)2
∑

i

|AL
i − ÂL

i |p
)1/p

, p = 1, 2,

||AL − ÂL||l∞ = max
i

(|AL
i − ÂL

i |).

In order to obtain acceptable results the stability of the PPH multires-
olution, analyzed in the previous sections, is crucial.

The compression ratio is defined as in [33], [34] by

rc =
nnz

(JL + 1)× (JL + 1)− (J0 + 1)× (J0 + 1)
,

where nnz denotes the number of non zero detail coefficients. Note that the
smaller rc, the larger the compression achieved.

On the other hand, the multiresolution thresholding procedure aims to
remove noise by thresholding only the coefficients of the detail subbands
while keeping the low resolution coefficients unaltered. As proved in [27], the
soft-threshold can be considered the optimal procedure, from an statistical
point of view, for denoising applications.

To perform the best denoisng results we have used the soft-threshold
method varying the threshold value in each subband and in each scale in
the following way:

εk
1 = 2 ∗

σ
√

2 ln(Mk
1 )

(k + 1) ∗ (k + 1)

εk
2 =

σ
√

2 ln(Mk
2 )

(k + 1) ∗ (k + 1)

εk
3 =

σ
√

2 ln(Mk
3 )

(k + 1) ∗ (k + 1)

where Mk
1 , Mk

2 , Mk
3 are respectively the size of the matrix ∆k

1 , ∆k
2 and

∆k
3, k = 1, 2, . . . , L, and σ2 denotes the noise variance of the image.

The choice of εk
1 is justified by the fact that the ∆k

1 subband contains
most of the detail information.

The threshold determines how much noise we want to suppress, and the
larger the variance of the noise, the larger should it be.

17



4.3.1 Separable framework

Our test concerns the cameraman image, displayed in Figure 7.

50 100 150 200 250
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100
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200

250

Figure 7: Cameraman image

For this numerical test we consider JL = 256 (the size of the image is
257×257) where L = 4 (finest level of resolution) and ε = 10 (truncation pa-
rameter). We consider both linear (LIN4-The 4-point linear Delauries and
Dubuc interpolatory wavelet transform) and nonlinear (PPH-Our 4 point
nonlinear PPH multiresolution transform) tensor-product schemes. A zoom
of the reconstructed images on an edge-dominated region is displayed in Fig-
ure 8. The PPH algorithm leads to a reconstructed image free of numerical
artifacts or blurred regions. The numerical values in Table 2 are also con-
sistent with our observations, and the PPH leads to better relation between
rc and quality of the reconstructed image.

ε = 10 LIN4 PPH
nnz 12580 12100
rc 1.91e− 01 1.84e− 01
l1 3.82 3.25
l∞ 31.30 29.93
l2 5.23 4.56

Table 2: Cameraman image (JL = 256): Number of non zero coefficients,
compression ratio, l∞, l1 and l2 norms of compression error.
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Figure 8: Upper-left Original, upper-right LIN4, bottom PPH, L = 4, ε = 10

More images examples and discussion can be found in [9].

4.3.2 Nonseparable (Quincunx) framework

For an optimal representation of the edges, it is crucial to develop nonlinear
schemes which are not based on tensor product. In [7], we link the non sepa-
rable quincunx pyramid and the nonlinear discrete Harten’s multiresolution
framework. In order to obtain the stability of these representations, some
new multiresolution processing algorithms was introduced.

First, we introduce a Harten’s multiresolution analysis in [0, 1] × [0, 1]
which admits a quincunx pyramid as a decomposition algorithm.
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The transform T (x, y) = (x + y, x− y) defines the sub-sampling grid of
the quincunx pyramid. Note that T 2 = 2Id, which is the basic sub-sampling
of the dyadic algorithm. Thus, in practice, the finest resolution level L is
considered even.

Let XL = {xL
i , yL

j }JL
i,j=0, xL

i = ihL, yL
j = jhL, hL = 2−Lh0, JL = 2LJ0,

J0 some integer, h0 = 1
J0

, L even.
Since T 2 = 2Id, we obtain, for i, j = 0, . . . , JL

2 , xL
2i = xL−2

i and yL
2j =

yL−2
j .

The connections between L and L − 1 or L − 1 and L − 2 are more
elaborate. For the first step, we have for j = 0, . . . , JL

(xL
2i, y

L
j ) = (xL−1

i , yL−1
j ), i = 0, . . .

JL

2
j even,

(xL
2i−1, y

L
j ) = (xL−1

i , yL−1
j ), i = 1, . . .

JL

2
j odd,

and for the second

(xL−1
i , yL−1

2j ) = (xL−2
i , yL−2

j ), i, j = 0, . . .
JL

2
.

The following steps are performed similarly.
We consider

Dk : C([0, 1]× [0, 1]) −→ V k f̄k
i,j = (Dkf)i,j = f(xk

i , y
k
j ), (27)

where if k is even 0 ≤ i, j ≤ Jk, with Jk := JL

2
L−k

2

and if k is odd 0 ≤ j ≤ 2Jk

and

0 ≤ i ≤ Jk, j even,

1 ≤ i ≤ Jk, j odd,

with Jk := JL

2
L−k+1

2

.

In this case, dimV k = (Jk + 1)× (Jk + 1) or dimV k = ((Jk + 1)× (Jk +
1)) + (Jk × Jk) respectively. The decimation operators are for k even

f̄k−1
i,j = (Dk−1

k f̄k)i,j = f̄k
2i,j , j even,

f̄k−1
i,j = (Dk−1

k f̄k)i,j = f̄k
2i−1,j , j odd,

and for k odd

f̄k−1
i,j = (Dk−1

k f̄k)i,j = f̄k
i,2j .
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In particular, we obtain for k even

N (Dk−1
k ) = {vk ∈ V k : vk

2i,j = 0, j even, vk
2i−1,j = 0, j odd},

and for k odd
N (Dk−1

k ) = {vk ∈ V k : vk
i,2j = 0}.

Thus, if we denote by ek the prediction errors, we will need to keep ek
2i−1,j j

even, ek
2i,j j odd and ek

i,2j−1 respectively.
A reconstruction procedure for this discretization is given by any oper-

ator Rk such that

Rk : V k −→ C([0, 1]× [0, 1]); DkRkf̄
k = f̄k, (28)

which means
(Rkf̄

k)(xk
i , y

k
j ) = f̄k

i,j = f(xk
i , y

k
j ). (29)

Therefore, Rk should be a continuous function that interpolates the data f̄k

at the grid points of Xk. Finally, we define the prediction operators by

P k
k−1 := DkRk−1. (30)

We have presented [7] a simple quincunx-PPH reconstruction, using the
one dimensional PPH interpolation. For each detail, we choose between two
principal directions the direction with smaller divided difference in absolute
value (see figure 9), and then we apply the PPH reconstruction in 1-D. Due
to this nonlinearity we use an error-control algorithm in order to ensure the
stability.

Figure 9: The circles are used to predict the square. For k even, right:
reconstruction from level k− 2 to k− 1, left: reconstruction from level k− 1
to k.

The idea of a modified-encoding to deal with nonlinear multiresolution
schemes is due to Harten. One dimensional algorithms in several settings
can be found in [15], [33]. We modify the direct transform in such a way that
the error accumulated in processing the values of the originally multi-scale
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representation remains under a prescribed value. The goal of this procedure
is to keep track of the accumulation error in processing the values in the
multi-scale representation. The idea is to ensure a prescribed accuracy by
intertwining the decomposition and the thresholding process. The details
depend on the thresholding error at coarser levels. The full algorithm in the
quincunx framework can be found in [7].

We perform a comparative study using the PSNR (Peak Signal Noise
Ratio) quality image indicator [41]. We recall that for an 8 bit image (0−
255),

PSNR = 20 log10 (
255

||fL − f̂L||l2
)

In table 3 the PSNR versus the number of non zero coefficients is con-
sidered, and one can observe that for a given level of quality the compression
attained by quincunx-PPH with error-control is higher than classical linear
tensor product of the same order.

The goal of nonlinear-quincunx reconstruction operators is to improve
the accuracy of the prediction in the vicinity of isolated singularities. A
better treatment of the singularities corresponding to the image edges and
therefore an improvement on the sparsity of the multiresolution representa-
tion of images are then expected.

PSNR LIN4 PPH-Quincunx (E-C)
30 9481 3559
35 14147 7635
40 21518 12922
45 32430 19015

Table 3: Cameraman image, Number non-zero details, L = 4, Quincunx

More details can be found in [7].

4.3.3 Denoising of images

In this subsection, we present other possible application of the PPH multires-
olution scheme: denoising, that is, the removal of noise from noisy data to
obtain the unknown signal. As we said, we use the Donoho’s soft-threshold
which is the best candidate from a statistical point of view.

We define rscheme as the PSNR number between the denoised picture
and the original one, and we compute RPPH/LIN4 = rPPH

rLIN4
.
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We consider different noise levels varying between 10 and 50.
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Figure 10: cameraman image, RPPH/LIN4 vs. noise level

The PPH obtains the best results (better PSNR for all the noise levels
considered). The proper adaptation of this technique to the presence of
edges improves the image denoising procedure.

See [8] for more experiments and details.

5 Conclusions and current research

In this paper, a fully nonlinear reconstruction operator in Harten’s mul-
tiresolution framework has been reviewed. The corresponding nonlinear
multiresolution algorithm has been analyzed in terms of accuracy and sta-
bility. Numerical approximation of hyperbolic conservation laws using the
PPH upwind scheme based on fluxes and the Shu-Osher third order TVD
Runge-Kutta method seems to work very well. In presence of discontinu-
ities it is stable and with low viscosity. A combined approach based on lo-
cal techniques, with a specific adaptive treatment of discontinuities for the
slowly varying part of the signal, and global techniques (applied locally),
derived from Fourier decompositions, to represent the oscillatory part has
been analyzed. Finally, several image processing applications are presented.
Edge resolution, robustness with regard to texture or noise, accuracy and
compression rate have been investigated. One should mention that in our
calculations the CPU time related to the PPH scheme remains, up to 4%,
equivalent to the CPU time associated to the linear scheme.
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Our group is collaborating in some other PPH research issues:

• Extension of PPH’s ideas to the cell-average setting.

• Definition and analysis of new nonlinear reconstruction operators of
high order.

• Generalization of the stability analysis in order to include general fam-
ilies of schemes.

• Definition and analysis of PPH schemes of Hermite’s type.

• Application of nonlinear schemes for color images processing.

• ...
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