Intensively Computational Electromagnetic Tecniques for the Analysis of Complex Communication Devices

Alejandro Alvarez Melcon

alejandro.alvarez@upct.es

Universidad Politécnica de Cartagena ETSI. Telecomunicación Dpto. Tecnologías de la Información y las Comunicaciones

> Jornadas Paralelismo Murcia 12 - 13 June 2007

Introduction

- Generalities
- Objectives of the talk

Introduction

- Generalities
- Objectives of the talk

Theory

- Integral equation with free-space Green's functions
- Integral equation with complex Green's functions

3 Results - Two applications

- Shielded Microwave Filter
- Fields Calculation for Multipactor Analysis

Introduction

- Generalities
- Objectives of the talk

Theory

- Integral equation with free-space Green's functions
- Integral equation with complex Green's functions

Results - Two applications

- Shielded Microwave Filter
- Fields Calculation for Multipactor Analysis

Introduction

- Generalities
- Objectives of the talk

Theory

- Integral equation with free-space Green's functions
- Integral equation with complex Green's functions

Results - Two applications

- Shielded Microwave Filter
- Fields Calculation for Multipactor Analysis

- Computer Aided Design Systems (CAD) Tools are very important to cope with the increasing complexity of communication systems.
- CAD tools can decrease development time and cost, by reducing experimental work.
- Problem:
- Usually, practical designs require hundreds of time consuming analysis:
- To make CAD procedures usable, it is necessary to reduce computational time and cost.

- Computer Aided Design Systems (CAD) Tools are very important to cope with the increasing complexity of communication systems.
- CAD tools can decrease development time and cost, by reducing experimental work.

• Problem:

- Usually, practical designs require hundreds of time consuming analysis:
- To make CAD procedures usable, it is necessary to reduce computational time and cost.

- Computer Aided Design Systems (CAD) Tools are very important to cope with the increasing complexity of communication systems.
- CAD tools can decrease development time and cost, by reducing experimental work.
- Problem: Complex systems are computationally very intensive
- Usually, practical designs require hundreds of time consuming analysis:
- To make CAD procedures usable, it is necessary to reduce computational time and cost.

- Computer Aided Design Systems (CAD) Tools are very important to cope with the increasing complexity of communication systems.
- CAD tools can decrease development time and cost, by reducing experimental work.
- Problem: Complex systems are computationally very intensive
- Usually, practical designs require hundreds of time consuming analysis:
- To make CAD procedures usable, it is necessary to reduce computational time and cost.

Image: A matrix and a matrix

- Computer Aided Design Systems (CAD) Tools are very important to cope with the increasing complexity of communication systems.
- CAD tools can decrease development time and cost, by reducing experimental work.
- Problem: Complex systems are computationally very intensive
- Usually, practical designs require hundreds of time consuming analysis: This is unpractical
- To make CAD procedures usable, it is necessary to reduce computational time and cost.

Image: A matrix and a matrix

- Computer Aided Design Systems (CAD) Tools are very important to cope with the increasing complexity of communication systems.
- CAD tools can decrease development time and cost, by reducing experimental work.
- Problem: Complex systems are computationally very intensive
- Usually, practical designs require hundreds of time consuming analysis: This is unpractical
- To make CAD procedures usable, it is necessary to reduce computational time and cost.

< 口 > < 同

How can we reduce computational time and cost?

 There are two different approaches to reduce time and cost in a specific application:

How can we reduce computational time and cost?

 There are two different approaches to reduce time and cost in a specific application:

Mathematical approach

- Develop novel efficient techniques.
- Apply inventiveness, and push the analytical possibilities of the problem to a maximum.
- Mathematical transformations to accelerate series, improper integrals, etc.

How can we reduce computational time and cost?

 There are two different approaches to reduce time and cost in a specific application:

Mathematical approach

- Develop novel efficient techniques.
- Apply inventiveness, and push the analytical possibilities of the problem to a maximum.
- Mathematical transformations to accelerate series, improper integrals, etc.

Numerical approach

- Faster and larger computers.
- Parallel computation to exploit the computational capabilities of the machines.
- Research into numerical routines to invert faster larger systems (iterative solvers, etc.).

Objectives of the Talk

- We present two different techniques based on the Integral Equation Method, for the analysis of complex communication printed circuits.
- Both techniques are computationally very intensive, but intrinsically they are very different (different solutions to the speed problem):

Objectives of the Talk

- We present two different techniques based on the Integral Equation Method, for the analysis of complex communication printed circuits.
- Both techniques are computationally very intensive, but intrinsically they are very different (different solutions to the speed problem):

Free-space Green's functions

- The kernel contains little information of the structure.
- The whole problem must be solved numerically.
- Huge systems of linear

Objectives of the Talk

- We present two different techniques based on the Integral Equation Method, for the analysis of complex communication printed circuits.
- Both techniques are computationally very intensive, but intrinsically they are very different (different solutions to the speed problem):

Free-space Green's functions

- The kernel contains little information of the structure.
- The whole problem must be solved numerically.
- Huge systems of linear

Cavity Green's functions

- More intelligent Kernel.
- The enclosure and dielectric substrates are already included in the Kernel.
- Numerical solution is reduced

- The kernel of the integral equation is formulated in free-space.
- It has a very simple analytical form:

- The kernel of the integral equation is formulated in free-space.
- It has a very simple analytical form:

$$\overline{\overline{G}}_{A}(\vec{r},\vec{r}') = \frac{\mu_{0}e^{-jk_{0}|\vec{r}-\vec{r}'|}}{4\pi|\vec{r}-\vec{r}'|} \quad (1)$$

- Only exponential functions are involved.
- It has only information on the radiation condition at infinity.
- The whole circuit must be discretized and solved.

- The kernel of the integral equation is formulated in free-space.
- It has a very simple analytical form:

$$\overline{\overline{G}}_{A}(\vec{r},\vec{r}') = \frac{\mu_{0}e^{-jk_{0}|\vec{r}-\vec{r}'|}}{4\pi|\vec{r}-\vec{r}'|} \quad (1)$$

- Only exponential functions are involved.
- It has only information on the radiation condition at infinity.
- The whole circuit must be discretized and solved.

- The kernel of the integral equation is formulated in free-space.
- It has a very simple analytical form:

$$\overline{\overline{G}}_{A}(\vec{r},\vec{r}') = \frac{\mu_{0}e^{-jk_{0}|\vec{r}-\vec{r}'|}}{4\pi|\vec{r}-\vec{r}'|} \quad (1)$$

- Only exponential functions are involved.
- It has only information on the radiation condition at infinity.
- The whole circuit must be discretized and solved.

- The kernel of the integral equation is formulated in free-space.
- It has a very simple analytical form:

$$\overline{\overline{G}}_{A}(\vec{r},\vec{r}') = \frac{\mu_{0}e^{-jk_{0}|\vec{r}-\vec{r}'|}}{4\pi|\vec{r}-\vec{r}'|} \quad (1)$$

- Only exponential functions are involved.
- It has only information on the radiation condition at infinity.
- The whole circuit must be discretized and solved.

- The kernel of the integral equation is formulated in free-space.
- It has a very simple analytical form:

$$\overline{\overline{G}}_{A}(\vec{r},\vec{r}') = \frac{\mu_{0}e^{-jk_{0}|\vec{r}-\vec{r}'|}}{4\pi|\vec{r}-\vec{r}'|} \quad (1)$$

- Only exponential functions are involved.
- It has only information on the radiation condition at infinity.
- The whole circuit must be discretized and solved.

- Green's functions do not contain information on dielectric substrates.
- For printed structures the dielectrics must also be discretized, either in volume (VIE) or in surface (SIE).
- Huge systems of linear equations must be solved fast.

- Green's functions do not contain information on dielectric substrates.
- For printed structures the dielectrics must also be discretized, either in volume (VIE) or in surface (SIE).
- Huge systems of linear equations must be solved fast.

- Green's functions do not contain information on dielectric substrates.
- For printed structures the dielectrics must also be discretized, either in volume (VIE) or in surface (SIE).
- Huge systems of linear equations must be solved fast.

- Green's functions contain information on the shielding enclosure.
- For rectangular shaped cavities, analytical solutions in terms of series are available.
- Mathematical transformations to improve convergence are appropriate (Kummer, Ewald).

Key Points of the Formulation

- Green's functions contain information on the shielding enclosure.
- For rectangular shaped cavities, analytical solutions in terms of series are available.
- Mathematical transformations to improve convergence are appropriate (Kummer, Ewald).

$$G^{ext} = \frac{2}{a\pi} \sum_{n=0}^{\infty} \tilde{G} f_n g_n \qquad (2)$$

Millions of fast evaluations are needed.

Key Points of the Formulation

- Green's functions contain information on the shielding enclosure.
- For rectangular shaped cavities, analytical solutions in terms of series are available.
- Mathematical transformations to improve convergence are appropriate (Kummer, Ewald).

$$G^{ext} = \frac{2}{a\pi} \sum_{n=0}^{\infty} \tilde{G} f_n g_n \qquad (2)$$

Millions of fast evaluations are needed.

Key Points of the Formulation

- Green's functions contain information on the shielding enclosure.
- For rectangular shaped cavities, analytical solutions in terms of series are available.
- Mathematical transformations to improve convergence are appropriate (Kummer, Ewald).

$$G^{ext} = \frac{2}{a\pi} \sum_{n=0}^{\infty} \tilde{G} f_n g_n \qquad (2)$$

Millions of fast evaluations are needed.

- If the enclosure is of complex geometry, a numerical approach has been developed (spatial images technique).
- Boundary conditions are imposed at discrete points along the cavity wall.

Key Points of the Formulation

- If the enclosure is of complex geometry, a numerical approach has been developed (spatial images technique).
- Boundary conditions are imposed at discrete points along the cavity wall.

$$\sum_{k=1}^{N} q_k \, G_V(\vec{r_i}, \vec{r_k}') = -G_V(\vec{r_i}, \vec{r_0}');$$
(3)

Millions of small systems of linear equations need to be solved.

Key Points of the Formulation

- If the enclosure is of complex geometry, a numerical approach has been developed (spatial images technique).
- Boundary conditions are imposed at discrete points along the cavity wall.

$$\sum_{k=1}^{N} q_k \, G_V(\vec{r_i}, \vec{r_k}') = -G_V(\vec{r_i}, \vec{r_0}');$$
(3)

Millions of small systems of linear equations need to be solved.

Key Points of the Formulation

- If the enclosure is of complex geometry, a numerical approach has been developed (spatial images technique).
- Boundary conditions are imposed at discrete points along the cavity wall.

$$\sum_{k=1}^{N} q_k \, G_V(\vec{r_i}, \vec{r_k}') = -G_V(\vec{r_i}, \vec{r_0}');$$

(3)

Millions of small systems of linear equations need to be solved.

- Analytical treatment can be push to a maximum by including the dielectric layers with the Sommerfeld transformation (spectral).
- Dielectric substrates are treated analytically.

- Analytical treatment can be push to a maximum by including the dielectric layers with the Sommerfeld transformation (spectral).
- Dielectric substrates are treated analytically.

- Numerical treatment is reduced only to the printed metalizations.
- Final system of linear equations much smaller
- But millions of smaller problems must be solved.

- Analytical treatment can be push to a maximum by including the dielectric layers with the Sommerfeld transformation (spectral).
- Dielectric substrates are treated analytically.

- Numerical treatment is reduced only to the printed metalizations.
- Final system of linear equations much smaller.
- But millions of smaller problems must be solved.

- Analytical treatment can be push to a maximum by including the dielectric layers with the Sommerfeld transformation (spectral).
- Dielectric substrates are treated analytically.

- Numerical treatment is reduced only to the printed metalizations.
- Final system of linear equations much smaller.
- But millions of smaller problems must be solved.

- Analytical treatment can be push to a maximum by including the dielectric layers with the Sommerfeld transformation (spectral).
- Dielectric substrates are treated analytically.

- Numerical treatment is reduced only to the printed metalizations.
- Final system of linear equations much smaller.
- But millions of smaller problems must be solved.

Design of Shielded Microwave Filters

- A CAD tool based on these techniques can be very useful in the design of practical circuits for communication systems (mobile, satellite, etc).
- The CAD tool will be useful only if analysis time can be reduced even for complex structures.

Results Examples

Design of Shielded Microwave Filters

- A CAD tool based on these techniques can be very useful in the design of practical circuits for communication systems (mobile, satellite, etc).
- The CAD tool will be useful only if analysis time can be reduced even for complex structures.

Results Examples

Design of Shielded Microwave Filters

- A CAD tool based on these techniques can be very useful in the design of practical circuits for communication systems (mobile, satellite, etc).
- The CAD tool will be useful only if analysis time can be reduced even for complex structures.

Alejandro Alvarez Melcón (U.P. Cartagena) Electromagnetic Techniques for Com. Devices Jornadas Paralelismo Murcia

Fields Calculation for Multipactor Analysis

- Electromagnetic fields can be computed to investigate the risk of RF breakdown in high power satellite devices.
- The use of dielectric objects placed off-center in the cavity can reduce multipactor risk.

Fields Calculation for Multipactor Analysis

- Electromagnetic fields can be computed to investigate the risk of RF breakdown in high power satellite devices.
- The use of dielectric objects placed off-center in the cavity can reduce multipactor risk.

Fields Calculation for Multipactor Analysis

- Electromagnetic fields can be computed to investigate the risk of RF breakdown in high power satellite devices.
- The use of dielectric objects placed off-center in the cavity can reduce multipactor risk.

- CAD tools are needed in order to reduce development time and cost for the radiofrequency circuits used in communication applications.
- Useful CAD tools must be very fast to allow for real time optimization of the devices.
- The exploitation of the analytical possibilities of the problem allows to explore two different directions:

- CAD tools are needed in order to reduce development time and cost for the radiofrequency circuits used in communication applications.
- Useful CAD tools must be very fast to allow for real time optimization of the devices.
- The exploitation of the analytical possibilities of the problem allows to explore two different directions:

Classical:

Algorithms to invert very large systems of equations.

- CAD tools are needed in order to reduce development time and cost for the radiofrequency circuits used in communication applications.
- Useful CAD tools must be very fast to allow for real time optimization of the devices.
- The exploitation of the analytical possibilities of the problem allows to explore two different directions:

Classical:

Algorithms to invert very large systems of equations.

Parallel Tasks:

Optimize the calculation of millions of small problems.

Image: Image:

- CAD tools are needed in order to reduce development time and cost for the radiofrequency circuits used in communication applications.
- Useful CAD tools must be very fast to allow for real time optimization of the devices.
- The exploitation of the analytical possibilities of the problem allows to explore two different directions:

Classical:

Algorithms to invert very large systems of equations.

Parallel Tasks:

Optimize the calculation of millions of small problems.

• Which of the two approaches is most suited for available techniques?.