
Application of Heterogeneous Parallel
Computing to EO and Remote Sensing

Antonio Plaza, David Valencia, Javier Plaza & Pablo Martínez
Department of Technology of Computers and Communications

Computer Science Department, University of Extremadura
Contact e-mail: aplaza@unex.es

URL: http://www.umbc.edu/rssipl/people/aplaza

Meeting on Parallel Routines Optimization & Applications, University of Murcia, 12-13 June 2007



JRCA 2006 2

Talk outline

Introduction to EO & remote sensing
Detection algorithms
Classification algorithms
Heterogeneous implementations
Use of HeteroMPI
Conclusions
Future lines

Meeting on Parallel Routines Optimization & Applications, University of Murcia, 12-13 June 2007



JRCA 2006 3

Quantification: Determines the abundance 
of materials (e.g. chemical/biological).

Identification: Determines the unique 
identity of the foregoing generic categories 
(i.e. material identification). 

Discrimination: Determines generic 
categories of the foregoing classes.

Classification: Separates materials into 
spectrally similar groups.

Detection: Determines the presence of 
materials, objects, activities, or events.

Quantification: Determines the abundance 
of materials (e.g. chemical/biological).

Identification: Determines the unique 
identity of the foregoing generic categories 
(i.e. material identification). 

Discrimination: Determines generic 
categories of the foregoing classes.

Classification: Separates materials into 
spectrally similar groups.

Detection: Determines the presence of 
materials, objects, activities, or events.
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Levels of information in EO & RS
Remote sensing technology has evolved from panchromatic and multispectral
data, with only a few bands, to hyperspectral imagery with hundreds of bands.
The evolution in sensor technology has introduced changes in algorithm design:
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Hyperspectral imaging concept
One of the most relevant problems is the presence of mixed pixels (in which
several substances may be present at sub-pixel levels).
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Hyperspectral applications

AVIRIS scene over New York WTC Debris and dust map (USGS)

Hyperspectral image processing algorithms are very expensive in 
computational terms.
High computing performance is essential in may applications
(environmental monitoring, fire tracking, chemical and biological
detection, target detection in military applications, etc.)
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Problems:

High computational complexities in data processing algorithms.

Large amounts of collected hyperspectral data sets are never used:

Analyses and information mining should be conducted in reasonable processing times.
Results might allow for the extraction of relevant knowledge (e.g. spectral libraries, etc.).

Solutions:

High-performance computers at low cost.

Commodity computers made up of off-the-shelf, low-cost computing components.
Networks of workstations interconnecting distributed platforms (Grid computing).
Applications:

Data mining and information extraction from large data repositories.

Why heterogeneous computing?
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Classic analysis methodology
The standard analysis methodology relies on the following steps:
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Detection algorithms
One of the most robust sub-pixel analysis techniques consists of
extracting extreme “pure” pixels (endmembers) and then model 
mixed pixels as combinations of pure spectral signatures:
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Pixel purity index (PPI)

Skewer 1
Skewer 2

Skewer 3

Extreme pixel

Extreme pixel

Extreme pixel

Extreme pixel

The PPI is one of the most popular endmember detection algorithms
(available in Kodak’s Research Systems ENVI software):
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Mathematical morphology is a very well-consolidated technique in 
the spatial domain that can be extended to the spectral domain.
It relies on a (partial) ordering relationship between the pixels of
the image, and the application of a so-called structuring element:

Morphological classification

Dilation

3x3 structuring element defines 
neighborhood around pixel P 
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K

Structuring 
element

Morphological opening (erosion + dilation)

Morphological filtering
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Extended mathematical morphology allows for spatial/spectral integration:
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Data partitioning strategies

Spectral-domain partitioning:

A single pixel vector (spectral signature) may be stored 
in different processing units and communications would 
be required for individual pixel-based calculations such 
as those in the PPI algorithm.

Spatial-domain partitioning:

A pixel vector (spectral signature) is always stored in the 
same processing unit. As a result, the entire spectral 
signature of each hyperspectral image pixel is never 
partitioned, thus reducing the cost of inter-processor 
communications.
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Spatial-domain partitioning

Original image
Classification map
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Handling communications:
(1) Need for communication when the structuring element is centered around a border

pixel of a local partition.
(2) Overlapping scatter allows one to reduce the cost introduced by communications

for small structuring element sizes (the proposed classification algorithm is based
on a constant, 3x3 structuring element)
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Definition of benchmark function

algorithm MM_perf (int m, int n, int se_size, int iter, int p, int q, int partition_size[p*q]) {
coord I = p, J = q;
node { I>=0 && J>=0: benchmark * ((partition_size[I*q+J]*iter); };
parent[0,0]; 

}

Definition of a performance model for the morphological processing algorithm (mpC):

• Parameter m specifies the number samples of the data cube.
• Parameter n specifies the number of lines. 
• Parameters se_size and iter respectively denote the size of the SE and the number of 

iterations executed by the algorithm. 
• Parameters p and q indicate the dimensions of the computational grid (in columns and 

rows, respectively), which are used to map the spatial coordinates of the individual 
processors within the processor grid layout. 

• Finally, parameter partition_size is an array that indicates the size of the local PSSPs 
(calculated automatically using the relative estimated computing power of the heterogeneous 
processors using the benchmark function). 

Meeting on Parallel Routines Optimization & Applications, University of Murcia, 12-13 June 2007
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Heterogeneous implementation
The benchmark function should be representative of the application and computationally light.

We have adopted as benchmark function the computation of the MEI index for a 3x3 SE:

1) The morphological algorithm is based on repeatedly computing this function.

2) It prevents the inclusion into the performance model of optimization aspects, such as the 
possible presence in cache memory of pixels belonging to a certain SE neighborhood.

3) We assume for the computation of the benchmark function that the amount of data allocated 
to a single processor in the cluster is a full AVIRIS hyperspectral cube with 614x512 pixels 
(we assume an unfavorable scenario in which each processor is probably forced to make use of 
reallocation/paging mechanisms due to cache misses.)

Meeting on Parallel Routines Optimization & Applications, University of Murcia, 12-13 June 2007
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Communication framework (I)
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Assignment of data partitions to a set of heterogeneous processors arranged in a 4x4 virtual 
processor grid:



JRCA 2006 19

Communication framework (II)
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Processors in leftmost column (column 0) first send their overlap borders to processors in column 
1 and then wait for the overlap borders of processors in that column:



JRCA 2006 20

Communication framework (III)
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Processors in middle column (column 1) first send their overlap borders to processors in columns 
0 and 2 and then wait for the overlap borders of processors in those columns:
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Communication framework (IV)
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Processors in rightmost column (column 3) first wait for the overlap borders of processors in 
column 2 and then send their overlap borders to processors in that column:
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HeteroMPI implementation (I)
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main(int argc, char *argv[]){
HeteroMPI_Init(&argc,&argv);
if (HeteroMPI_Is_member(HMPI_COMM_WORLD_GROUP)){

HeteroMPI_Recon(benchmark, dims, 15, &output);
}
HeteroMPI_Group_create(&gid, &MPC_NetType_MM_perf, modelp, num_param);
if (HeteroMPI_Is_free()){

HeteroMPI_Group_create(&gid, &MPC_NetType_MM_rend, NULL, 0);
}
if (HeteroMPI_Is_free()){

HeteroMPI_Finalize(0);
}
//Cont’d in next slide

• Runtime system initialized using HeteroMPI_Init.
• Operation HeteroMPI_Recon estimates the performances of processors using benchmark.
• A group of processes is created using HeteroMPI_Group_create (the members of the 

group execute the parallel algorithm).
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HeteroMPI implementation (II)
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• HeteroMPI and MPI interconnected by HeteroMPI_Get_comm, which returns an MPI 
communicator with communication group of MPI processes defined by gid.

• Communicator used to call standard MPI comm routines as MPI_Isend and MPI_Waitall.
• Group freed with HeteroMPI_Group_free; runtime system finalized with HeteroMPI_Finalize.

if (HeteroMPI_Is_member(&gid)){
Communicator = *(MPI_Comm *)HeteroMPI_Get_comm(&gid);
if (&Communicator == NULL){

HeteroMPI_Finalize(0);}
if (HeteroMPI_Group_coordof(&gid,&dim,&coord) == HMPI_SUCCESS){
HeteroMPI_Group_performances(&gid, speeds);

Read_image(name,image,lin,col,bands,data_type,init);
for (i=imax; i>1; i=i--){

AMC_algorithm(image,lin,col,bands,sizeofB,res);
//Communication framework through MPI_Isend and MPI_Waitall

if (HeteroMPI_Is_member(&gid)){
free(image);}

HeteroMPI_Group_free(&gid);
HeteroMPI_Finalize(0);
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Experimental data (I)
Data set owned by NASA/Jet Propulstion Lab Data set owned by U.S. Geological Survey

AVIRIS data over lower Manhattan (09/15/01) Spatial location of thermal hot spots in WTC area

Meeting on Parallel Routines Optimization & Applications, University of Murcia, 12-13 June 2007
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Experimental data (II)
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Experimental data (III)

Dust/debris map generated by USGS
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Detection/classification accuracy
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Heterogeneous cluster (HCL-2) at University College Dublin

Heterogeneous clusters (II)
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Beowulf commodity cluster
Thunderhead (NASA/GSFC)

http://thunderhead.gsfc.nasa.gov

Meeting on Parallel Routines Optimization & Applications, University of Murcia, 12-13 June 2007



JRCA 2006 31

Execution times of the HeteroMPI based algorithm on HCL-1 (different numbers of iterations):

Experimental results on HCL-1 (I)

Meeting on Parallel Routines Optimization & Applications, University of Murcia, 12-13 June 2007
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Load-balancing rates using a benchmark function without memory considerations:

Experimental results on HCL-1 (II)
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Experimental results on HCL-2 (I)
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Execution times of the HeteroMPI based algorithm on HCL-2 (different numbers of bands):
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Execution times of the HeteroMPI based algorithm on HCL-2 (different numbers of iterations):
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Experimental results on HCL-2 (II)
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Results on NASA’s Thunderhead
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• A performance drop is observed for all algorithms 
when the number of processors is very large.

• This is because the partition sizes decrease 
significantly, , which result in a significant increase 
in the execution times of the single MPI_Gather 
operation used to develop our MPI-based parallel 
code for the homogeneous platform.

• A possible solution is to replace the single 
MPI_Gather gathering medium-sized messages by 
an equivalent sequence of MPI_Gather operations, 
each gathering messages with a size that fits a range 
of smaller messages.
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Summary and observations

Despite the enormous computational demands and potential societal impact, 
the remote sensing community has not yet developed standardized parallel 
algorithms for low-cost computing architectures.
Heterogeneous computing offers an excellent alternative to expensive 
dedicated computers in data mining and information extraction apps.
Distributed nature of such networks fits the properties of remote sensing 
processing environments, with many (different but related) institutions 
collecting high-dimensional data (Grid computing).
Evaluation strategy based on comparing efficiency of heterogeneous 
algorithms on heterogeneous NOWs with the efficiency achieved by 
homogeneous versions on equally powerful homogeneous NOWs.
Experimental results reveal that heterogeneous computing may introduce 
relevant changes in current parallel remote sensing systems.
Further research is required to incorporate a model of collective 
communications into our considered application.
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Future research lines
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Real-time onboard processing using low-weight hardware components
such as FPGAs, GPUs and heterogeneous networks of such devices.
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