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Talk outline

e Introduction to EO & remote sensing
e Detection algorithms
e Classification algorithms

e Heterogeneous implementations
e Use of HeteroMPI

e Conclusions

e Future lines




Levels of information in EO & RS

e Remote sensing technology has evolved from panchromatic and multispectral
data, with only a few bands, to hyperspectral imagery with hundreds of bands.

e The evolution in sensor technology has introduced changes in algorithm design:

Quantification: Determines the abundance
of materials (e.g. chemical/biological).

Identification: Determines the unique
identity of the foregoing generic categories
(i.e. material identification).

Discrimination: Determines generic
categories of the foregoing classes.

Classification: Separates materials into

spectrally similar groups.

Detection: Determines the presence of
materials, objects, activities, or events.
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Hyperspectral imaging concept

e One of the most relevant problems is the presence of mixed pixels (in which

several substances may be present at sub-pixel levels).
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Hyperspectral applications

e Hyperspectral image processing algorithms are very expensive in
computational terms.

e High computing performance is essential in may applications
(environmental monitoring, fire tracking, chemical and biological
detection, target detection in military applications, etc.)

AVIRIS scene over New York WTC Debris and dust map (USGS)
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Why heterogeneous computing?

Problems:

High computational complexities in data processing algorithms.
Large amounts of collected hyperspectral data sets are never used:
Analyses and information mining should be conducted in reasonable processing times.

Results might allow for the extraction of relevant knowledge (e.g. spectral libraries, efc.).

Solutions:

High-performance computers at low cost.
Commodity computers made up of off-the-shelf, low-cost computing components.
Networks of workstations interconnecting distributed platforms (Grid computing).
Applications:

Data mining and information extraction from large data repositories.
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Classic analysis methodology

e The standard analysis methodology relies on the following steps:

Pre-processing Reduced

PCA, MNF, ICA
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Detection algorithms

e One of the most robust sub-pixel analysis techniques consists of
extracting extreme “pure” pixels (endmembers) and then model
mixed pixels as combinations of pure spectral signatures:

Banda i
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Pixel purity index (PPI)

e The PPl is one of the most popular endmember detection algorithms
(available in Kodak’s Research Systems ENVI software):
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Morphological classification

e Mathematical morphology is a very well-consolidated technique in
the spatial domain that can be extended to the spectral domain.

e It relies on a (partial) ordering relationship between the pixels of
the image, and the application of a so-called structuring element:

Original image

Dilations 3x3 structuring element defines
neighborhood around pixel P
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Extended math morphology

e Extended mathematical morphology allows for spatial/spectral integration:
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Data partitioning strategies

Spectral-domain partitioning:

A single pixel vector (spectral signature) may be stored
in different processing units and communications would
be required for individual pixel-based calculations such
as those in the PPI algorithm.

A pixel vector (spectral signature) is always stored in the
same processing unit. As a result, the entire spectral
signature of each hyperspectral image pixel is never
partitioned, thus reducing the cost of inter-processor
communications.

Spatial-domain partitioning: "’
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Spatial-domain partitioning

Processing node #1
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Parallel implementation of MM

Handling communications:

(1) Need for communication when the structuring element is centered around a border
pixel of a local partition.

(2) Overlapping scatter allows one to reduce the cost introduced by communications
for small structuring element sizes (the proposed classification algorithm is based
on a constant, 3x3 structuring element)
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Definition of benchmark function

Definition of a performance model for the morphological processing algorithm (mpC):

algorithm MM_perf (int m, int n, int se_size, int iter, int p, int q, int partition_size[p*q]) {
coordl =p,] =q;
node { [>=0 && J>=0: benchmark * ((partition_size[I*q+]]*iter); };
parent[0,0];

Parameter m specifies the number samples of the data cube.

Parameter n specifies the number of lines.

Parameters se_size and iter respectively denote the size of the SE and the number of
iterations executed by the algorithm.

Parameters p and q indicate the dimensions of the computational grid (in columns and
rows, respectively), which are used to map the spatial coordinates of the individual
processors within the processor grid layout.

Finally, parameter partition_size is an array that indicates the size of the local PSSPs
(calculated automatically using the relative estimated computing power of the heterogeneous
processors using the benchmark function).
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Heterogeneous implementation

The benchmark function should be representative of the application and computationally light.

We have adopted as benchmark function the computation of the MEI index for a 3x3 SE:
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The morphological algorithm is based on repeatedly computing this function.

It prevents the inclusion into the performance model of optimization aspects, such as the
possible presence in cache memory of pixels belonging to a certain SE neighborhood.

We assume for the computation of the benchmark function that the amount of data allocated
to a single processor in the cluster is a full AVIRIS hyperspectral cube with 614x512 pixels
(we assume an #nfavorable scenario in which each processor is probably forced to make use of
reallocation/paging mechanisms due to cache misses.)
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Communication framework ()

Assignment of data partitions to a set of heterogeneous processors arranged in a 4x4 virtual
processor grid:

Meeting on Parallel Routines Optimization & Applications, University of Murcia, 12-13 June 2007

Grupn e Redes M snabes
¥ Pracasamienio Digitsl de St



Communication framework (I1)

Processors in leftmost column (column 0) first send their overlap borders to processors in column
1 and then wait for the overlap borders of processors in that column:

[0,0] [1,0]

[0.1] (1]

[0’2] MPI_Isend

MPI Waitall

[12]
[13]

[03]
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Communication framework (lll)

Processors in middle column (column 1) first send their overlap borders to processors in columns
0 and 2 and then wait for the overlap borders of processors in those columns:

[0,0] [1,0] [2,0]

[2.1]

[0.1] (1]

MPI_ Isend MPI_ Isend
[1.2]

MPI Waitall

[0,2] 2]

MPI_ Waitall

[13]
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Communication framework (V)

Processors in rightmost column (column 3) first wait for the overlap borders of processors in
column 2 and then send their overlap borders to processors in that column:

[2.0]

[2,1] Bl

MPI Waitall

[22]

MPI Isend

[23]

Meeting on Parallel Routines Optimization & Applications, University of Murcia, 12-13 June 2007

Grupn e Redes M snabes
¥ Pracasamienio Digitsl de St



HeteroMPI implementation (I)

main(int argc, char *argv([]){

HeteroMPI_Init(&argc,&argv);

if (HeteroMPI_Is_member(HMPI_COMM_WORLD_GROUP)){
HeteroMPI_Recon(benchmark, dims, 15, &output);

}

HeteroMPI_Group_create(&gid, &MPC_NetType_MM_perf, modelp, num_param);

if (HeteroMPI_Is_free()){
HeteroMPI_Group_create(&gid, &MPC_NetType_MM_rend, NULL, 0);

}
if (HeteroMPI_ls_free()){

HeteroMPI_Finalize(0);
}

//Cont'd in next slide

* Runtime system initialized using HeteroMPI_Init.
* Operation HeteroMPI_Recon estimates the performances of processors using benchmark.

* A group of processes is created using HeteroMPI_Group_create (the members of the
group execute the parallel algorithm).

Ws Meeting on Parallel Routines Optimization & Applications, University of Murcia, 12-13 June 2007

Grupn e Redes M snabes



HeteroMPI implementation (I)

if (HeteroMPI_Is_member(&gid)){
Communicator = *(MPI_Comm *)HeteroMPI_Get_comm(&gid);
if (&Communicator == NULL){
HeteroMPI_Finalize(0);}
if (HeteroMPI_Group_coordof(&gid,&dim,&coord) == HMPI_SUCCESS)
HeteroMPI_Group_performances(&gid, speeds);
Read_image(name,image,lin,col,bands,data_type,init);
for (i=imax; i>1; i=i--){
AMC_algorithm(image,lin,col,bands,sizeofB,res);
/ICommunication framework through MPI_Isend and MPI_Waitall
if (HeteroMPI_Is_member(&gid)){
free(image);}
HeteroMPI_Group_free(&gid);
HeteroMPI_Finalize(0);

HeteroMPI and MPI interconnected by HeteroMPI_Get_comm, which returns an MPI
communicator with communication group of MPI processes defined by gid.

Communicator used to call standard MPI comm routines as MPI_Isend and MPI_Waitall.
Group freed with HeteroMPI_Group_free; runtime system finalized with HeteroMPI_Finalize.
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Experimental data (|

Data set owned by NASA/Jet Propulstlon Lab Data set owned by U.S. Geological Survey
gr __ N 4

AVIRIS data over lower Manhattan (09/15/01) Spatial location of thermal hot spots in WTC area
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Experimental data (ll)
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Experimental data (lll)
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Detection/classification accuracy

PPI ATGP UFCLS Dust/debris USGS MM PCT
(4012) (1263)  (916) Ground-truth class (2334) (1884)

0.56 | 0.001 | 0.002 | 0.123 Concrete (37A) 93.56 95.67

0.08 | 0.001 | 0.001 0.005 Concrete (37B) 90.23 93.28

0.8 | 0.003 | 0.005 | 0.012 Cement 81.64 89.43

0.8 | 0.002 | 0.003 | 0.002 Dust (15) 79.23 88.65

0.4 | 0.005 | 0.008 | 0.026 Dust (28) 76.67 92.05

0.4 | 0.001 | 0.001 0.169 Dust (36) 85.02 91.23

0.04 | 0.000 | 0.000 | 0.000 Gypsum wall board 82.99 96.89

820 | 0.08 | 0.000 | 0.000 | 0.008 Overall 80.45 93.96

SAD-based spectral similarity scores between Classification accuracies (percentage) obtained by
target pixels detected by heterogeneous algorithms ANN-based heterogeneous algorithms for the
and the known ground targets. Single-processor dust/debris ground classes available from USGS.
times are given in the parentheses. Sequential times are given in the parentheses.




Heterogeneous clusters (l)

Heterogeneous cluster (HCL-1) at University College Dublin

Proc. Name Architecture CPU Memory Cache Relative
Number  (processors) description (MHz) (MB) (KB) S

Pg1cluster Linux 2.4.18-10smp Intel(R)
(2 processors) XEON(TM)

Csultra SunOS 5.8 sundu sparc SUNW,
(1 processor) Ultra-5_10
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Heterogeneous clusters (ll)

Heterogeneous cluster (HCL-2) at University College Dublin

Model and
description

Dell Poweredge SC1425

Processor
type

Intel Xeon

Operating
system

Fedora Core 4

CPU
(Ghz)

Mem.

(MB)

Cache

(KB)

240 GB SCSI

80 GB SCSI

Dell Poweredge 750

Intel Xeon

Fedora Core 4

80 GB SATA

N/A

IBM E-server 326

Opteron

Debian

80 GB SATA

N/A

IBM E-server 326

Opteron

Fedora Core 4

80 GB SATA

N/A

IBM X-Series 306

Pentium 4

Debian

80 GB SATA

N/A

HP Proliant DL 320 G3

Pentium 4

Fedora Core 4

80 GB SATA

N/A

HP Proliant DL 320 G3

Celeron

Fedora Core 4

80 GB SATA

N/A

HP Proliant DL 140 G2

Intel Xeon

Debian

80 GB SATA

N/A

HP Proliant DL 140 G2

Intel Xeon

Debian

80 GB SATA

N/A

HP Proliant DL 140 G2

Intel Xeon

Debian

80 GB SATA

N/A
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Beowulf commodity cluster

Thunderhead (NASA/GSFC)

http://thunderhead.gsfc.nasa.gov

MNASA-Goddard Space Flight
Aggregate Specification Center
Mumber of nodes 2596 ‘
Total processors a12
Total memary (k) 296
Total disk {(GH) 20480
Interconnect 1 hyrinet 2000
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MNode Specification
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Experimental results on HCL-1 (I)

Execution times of the HeteroMPI based algorithm on HCL-1 (different numbers of iterations):

Processor: 1 2 3 4 S 6 7

0 46.86 186.46 285.51
47.05 183.66 288.77
47.32 187.38 287.96
47.09 180.55 274.10
50.01 199.20 300.94
50.59 197.76 309.22
48.32 188.48 291.75
48.26 191.09 294.96
48.90 188.25 290.83
50.48 200.33 304.19
51.07 197.50 308.83
46.43 180.44 274.77
47.12 183.85 282.43
46.54 184.44 288.52
46.85 186.32 288.67

—

O |0 | Q||| B |WwW]

—_
(==

—_—
[

—_
NS}

—_
W

._
~

Meeting on Parallel Routines Optimization & Applications, University of Murcia, 12-13 June 2007

Grupn e Redes M snabes
¥ Pracasamienio Digitsl de St



Experimental results on HCL-1 (l1)

Load-balancing rates using the proposed benchmark function:

Iterations: 1 2

Rmin

3

4

5

6

Rmax

D (imbalance)

Load-balancing rates using a benchmark function without memory considerations:

O Rnun
B Rmax

D=2.33
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Experimental results on HCL-2 (|

Execution times of the HeteroMPI based algorithm on HCL-2 (different numbers of bands):

Processor Number of spectral bands in the Indian Pines AVIRIS scene:

Number: )
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Experimental results on HCL-2 (ll)

Execution times of the HeteroMPI based algorithm on HCL-2 (different numbers of iterations):
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Results on NASA’s Thunderhead

—<— Hetero-PPI * A performance drop is observed for all algorithms
: ﬁtgﬁ;ﬁs thfg the number of processots is very large.

—O- Hetero-PCT This is because the partition sizes decrease

—A— Hetero-MM significantly, , which result in a significant increase
—— Linear in the execution times of the single MPI_Gather

operation used to develop our MPI-based parallel

code for the homogeneous platform.

A possible solution is to replace the single

MPI_Gather gathering medium-sized messages by

an equivalent sequence of MPI_Gather operations,

32 64 9 128 160 192 each gathering messages with a size that fits a range

Number of CPUs of smaller messages.

Hetero-PPI
Hetero-ATGP
Hetero-UFCLS
Hetero-PCT
Hetero-MM

Processing times (in seconds) of heterogeneous algorithms on NASA’s Thunderhead system
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Summary and observations

Despite the enormous computational demands and potential societal impact,
the remote sensing community has not yet developed standardized parallel
algorithms for low-cost computing architectures.

Heterogeneous computlng offers an excellent alternative to expenswe
dedicated computers in data mining and information extraction apps.

Distributed nature of such networks fits the properties of remote sensing
processing environments, with many (different but related) institutions
collecting high-dimensional data (Grid computing).

Evaluation strategy based on comparing efficiency of heterogeneous
algorithms on heterogeneous NOWs with the efficiency achieved by
homogeneous versions on equally powerful homogeneous NOWs.

Experimental results reveal that heterogeneous computing may introduce
relevant changes in current parallel remote sensing systems.

Further research is required to incorporate a model of collective
communications into our considered application.
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Future research lines

e Real-time onboard processing using low-weight hardware components
such as FPGAs, GPUs and heterogeneous networks of such devices.
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